

2024

Usman Sikander

Offensive Security Researcher

https://www.linkedin.com/in/usman-

sikander13/

BYOVD A Kernel Attack: Stealthy Threat to Endpoint Security

USMAN SIKANDER 1

1

BYOVD A Kernel Attack: Stealthy Threat to Endpoint Security

Introduction:

The cybersecurity landscape is continually evolving, with adversaries employing
increasingly sophisticated tactics to evade detection and compromise systems. One such
technique gaining prominence is Bring Your Own Vulnerable Driver (BYOVD). This method
leverages legitimate signed but vulnerable drivers to bypass security controls, granting
attackers unparalleled access and control over compromised systems on kernel level.

In this blog post, we delve into the intricacies of BYOVD attacks, exploring how malicious
actors exploit this technique to blind, terminate, and manipulate endpoint detection and
response (EDR) solutions. We will dissect the mechanisms used to obtain NT Authority
context and remove EDR callbacks, providing practical demonstrations of these attacks.
Furthermore, we will explore evasion tactics to counteract both static and dynamic
detection methods. By understanding the nuances of BYOVD and its implications, both red
and blue teams can enhance their defensive and offensive capabilities in the ongoing battle
for cybersecurity supremacy.

Division of Blog:

1. BYOVD Technique

2. DSE and Blocklisted driver in Windows

3. Loldrivers (community-driven project)

4. APT Campaigns used BYOVD

5. Understanding the EDR components

6. Arsenal Preparation and Practical Operations with vulnerable driver (EDR Blind,
EDR Terminate, NT-Authority Context, EDR Callbacks remove, Mimikatz Driver
Loading, DSE bypass)

7. Tactics of Evasion

Let’s embark on this journey to uncover the dangers posed by BYOVD and equip ourselves
with the knowledge to mitigate its impact.

USMAN SIKANDER 2

2

BYOVD

BYOVD Technique:

BYOVD, or Bring Your Own Vulnerable Driver, is a sophisticated attack technique where
malicious actors leverage legitimate but vulnerable drivers to compromise system
integrity. By exploiting these vulnerabilities, attackers can gain kernel-level access,
bypassing traditional security measures. These drivers, often integral to system operations,
provide a trusted entry point. Once compromised, attackers can manipulate system
processes, steal sensitive data, establish persistent backdoors, or deploy ransomware. The

USMAN SIKANDER 3

3

insidious nature of BYOVD lies in its ability to evade detection, as these drivers are typically
signed and trusted by the operating system.

Driver:

Windows drivers operate in two distinct modes: user mode and kernel mode. User-mode
drivers function within the confines of a specific application or process, offering limited
system access. Examples include printer drivers that manage print jobs or graphics drivers
that handle display output. Conversely, kernel-mode drivers execute at the core of the
operating system, possessing unrestricted access to system resources. They are
responsible for critical functions such as disk I/O, network communication, and hardware
management. Kernel-mode drivers, due to their privileged status, are often targeted by
attackers as they provide a direct pathway to system compromise.

To communicate with kernel-mode drivers, user-mode drivers typically employ
Input/Output Control (IOCTL) codes. These are special control codes sent to a device
driver to perform specific operations. The user-mode application initiates an IOCTL request,
which is then forwarded to the kernel-mode driver for processing. The driver performs the
requested operation and returns the results to the user-mode application. This mechanism
allows for controlled and secure interaction between the two modes. It’s important to note
that while user-mode drivers can interact with kernel-mode drivers, they operate within the
constraints of their user-mode environment and do not have direct access to system-level
resources.

USMAN SIKANDER 4

4

user-mode and kernel-mode components

Digital Signature Enforcement (DSE) and Blocklisted Drivers in Windows:

Digital Signature Enforcement (DSE) is a security feature implemented by Microsoft in
Windows Vista and subsequent versions to enhance system integrity and protect against
malicious software. It mandates that only drivers bearing valid digital signatures from trusted
authorities can be loaded onto the system.

How DSE Works:

When a driver is installed, the operating system verifies its digital signature. If the signature
is valid and matches the driver’s code, the driver is allowed to load. Conversely, if the
signature is invalid, missing, or from an untrusted source, the driver installation is blocked.

Blocklisted Driver: To further strengthen system security, Microsoft maintains a database
of known malicious or harmful drivers. These drivers are added to a blocklist, preventing their
installation and execution on Windows systems.

How Blocklisted Drivers Work:

When a driver is about to be installed, the operating system checks it against the blocklist. If
a match is found, the installation is blocked, and an error message is displayed.

Living Off The Land Drivers

Living Off The Land Drivers is a curated list of Windows drivers used by adversaries to bypass
security controls and carry out attacks. The project helps security professionals stay
informed and mitigate potential threats.

LOLDrivers

APTs Associated With BYOVD Technique

Some notable vulnerable driver attacks reported in the first half of 2023. This list shows that
BYOVD is widely used among threat actors, including APT and ransomware groups.

January:

• The threat actor Scattered Spider (UNC3944) exploits the iqvw64.sys driver with the
vulnerability CVE-2015–2291. iqvw64.sys is an old Intel Ethernet diagnostics driver
patched in 2015. (Reported by CrowdStrike)

February:

https://www.loldrivers.io/
https://nvd.nist.gov/vuln/detail/CVE-2015-2291
https://www.crowdstrike.com/blog/scattered-spider-attempts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

USMAN SIKANDER 5

5

• Attackers use malvertising to distribute malware and exploit a renamed version
(Иисус.sys) of the PROCEXP152.sys driver. PROCEXP152.sys is a part of Process
Explorer, the process management tool in Windows OS. (Reported by SentinelOne)

• A threat actor distributes the Sliver toolkit using the Sunlogin remote desktop
application and exploits the mhyprot2.sys driver. mhyprot2.sys is an anti-cheat driver
for the popular video game Genshin Impact. (Reported by AhnLab)

March:

• The UNC2970 APT group used the LIGHTSHOW tool to exploit ene.sys. ene.sys is a
vulnerable driver provided by ENE Technology Inc and signed with a certificate issued
by Ptolemy Tech Co. (Reported by Mandiant)

April:

• Ransomware groups used the AuKill tool to exploit the vulnerable driver of Windows
Process Explorer version 16.32. The renamed PROCEXP.SYS was dropped alongside
the original PROCEXP152.SYS. (Reported by Sophos)

May:

• Earth Longzhi, a subgroup of APT41 or Winnti, used the SPHijacker tool to exploit a
renamed version (mmmm.sys) of the vulnerable zamguard64.sys driver.
zamguard64.sys is used by the security software Zemana Anti-Malware. (Reported by
TrendMicro)

June:

• The BlackCat ransomware group used the spyboy Terminator tool to exploit the
zamguard64.sys/zam64.sys driver. (Reported by CrowdStrike here and here)

What is BYOVD? - BYOVD Attacks in 2023

Understanding EDR Components:

To effectively analyze EDR tampering techniques, we must first understand the core
components of an EDR solution.

EDR Components:

User Space Components

• EDR Processes: These are the main executable files that run in the context of a
protected system session.

https://www.sentinelone.com/labs/malvirt-net-virtualization-thrives-in-malvertising-attacks/
https://asec.ahnlab.com/en/47088/
https://www.mandiant.com/resources/blog/lightshift-and-lightshow
https://news.sophos.com/en-us/2023/04/19/aukill-edr-killer-malware-abuses-process-explorer-driver/
https://www.trendmicro.com/en_us/research/23/e/attack-on-security-titans-earth-longzhi-returns-with-new-tricks.html
https://www.trendmicro.com/en_fi/research/23/f/malvertising-used-as-entry-vector-for-blackcat-actors-also-lever.html
https://www.reddit.com/r/crowdstrike/comments/13wjrgn/20230531_situational_awareness_spyboy_defense/
https://www.sangfor.com/farsight-labs-threat-intelligence/cybersecurity/what-is-byovd-attacks-2023

USMAN SIKANDER 6

6

• EDR User-Space Service: This service handles communication and coordination
between different EDR components.

• EDR Registry Configuration: Contains settings, configurations, and collected data
used by the EDR.

Kernel Space Components

• EDR Callback Objects: These objects are registered within the operating system to
receive notifications about specific events.

• EDR Filter/Minifilter Drivers: These drivers intercept system calls and file system
operations to monitor for malicious activities.

Arsenal Preparation and Operations With Vulnerable Drivers:

NT-Authority System Context:

In the first stage, we rebuild and exploit the CVE-2019–16098 which is in driver Micro-Star
MSI Afterburner 4.6.2.15658 (aka RTCore64.sys and RTCore32.sys) allows any
authenticated user to read and write to arbitrary memory, I/O ports, and MSRs. Instead of
hardcoded base address of Ntoskrnl.exe, we calculate it dynamically and re-calculate all
offsets of fields under EPROCESS structure in new version of windows. EPROCESS structure
is an opaque structure that serves as the process object for a process. In kernel mode, the
address of the EPROCESS structure for the SYSTEM process is conveniently exposed by the
kernel through the exported symbol PsInitialSystemProcess.

Calculate the base address of Ntoskrnl.exe

PsInitialSystemProcess global variable points to the process object for the system
process. So, for calculate the offsetPsInitialSystemProcess address we need Ntoskrnl.exe

USMAN SIKANDER 7

7

base address which we calculate dynamically and after that we calculated all fields within
EPROCESS structure needed to steal system token and escalate privileges.

Struct offsets for required fields under EPROCESS Structure (Token, UniqueProcessId,
ActiveProcessLinks)

Fields Under EPROCESS to steal system token.

In the given diagram, we get the handle of device object. We use the RTCore64.sys driver
which is not detectable by MDE. During the arsenal preparation when we downloaded the
RTCore64.sys, MDE didn’t detect it in static analysis and to bypass the DSE there are a lot of
ways, which is not a part of this blog post. But for information, RTCore64.sys is still used in
many attacks and it is not flagged by MDE in static analysis as well.

Device Handle

In this diagram, we first calculate the base address of ntoskrnl.exe which is required to get
the offset of PsInitialSystemProcess. After getting the offset, we calculated the virtual
address of PsInitialSystemProcess and by using this address calculated all fields required
under EPROCESS structure to steal the system token. After that we steal the system token
and write with current process token and get elevated privileges using vulnerable driver
RTCore64.sys

Locating the Fields under EPROCESS struct

USMAN SIKANDER 8

8

Practical Video:

Usman Sikander on LinkedIn: [𝐆𝐄𝐓 𝑵𝑻-𝑨𝑼𝑻𝑯𝑶𝑹𝑰𝑻𝒀\𝑺𝒀𝑺𝑻𝑬𝑴 𝐂𝐎𝐍𝐓𝐄𝐗𝐓 𝐎𝐍...
𝐆𝐄𝐓 𝑵𝑻-𝑨𝑼𝑻𝑯𝑶𝑹𝑰𝑻𝒀\𝑺𝒀𝑺𝑻𝑬𝑴 𝐂𝐎𝐍𝐓𝐄𝐗𝐓 𝐎𝐍 𝐖𝐈𝐍𝐃𝐎𝐖𝐒 11 𝐔𝐒𝐈𝐍𝐆
𝑩𝒀𝑶𝑽𝑫…www.linkedin.com

Remove EDR Callbacks:

In the second stage, we prepare an arsenal which is removing registered EDR callbacks by
using the vulnerable driver. In our arsenal preparation, we use the same driver RTCore64.sys
which provide read and write permission on kernel level. So, we used the vulnerability and
removed callbacks of EDR solution to blind the EDR. We removed
𝐏𝐬𝐒𝐞𝐭𝐂𝐫𝐞𝐚𝐭𝐞𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐍𝐨𝐭𝐢𝐟𝐲𝐑𝐨𝐮𝐭𝐢𝐧𝐞 registered by Microsoft defender and Sysmon. By
removing the 𝐏𝐬𝐒𝐞𝐭𝐂𝐫𝐞𝐚𝐭𝐞𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐍𝐨𝐭𝐢𝐟𝐲𝐑𝐨𝐮𝐭𝐢𝐧𝐞 routine doesn’t mean you are fully
undetected by EDR, because EDRs are using a lot of other callbacks to send telemetry for
analysis, if you perform any other operation such as loading a image, creation of thread,
changes in registry, these will be notify and detected by EDRs. This study is just an idea to
remove EDR callbacks, the more you study the EDR components you can understand the
registered routines and their working.

In this diagram, we define the structure needed to perform the read and write operations
using the device handle.

https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F-ugcPost-7226278965731069952-o6dD?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F-ugcPost-7226278965731069952-o6dD?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F-ugcPost-7226278965731069952-o6dD?utm_source=share&utm_medium=member_desktop

USMAN SIKANDER 9

9

Structure Required

In this function, we get the base address of ntoskrnl.exe instead of leaking the hardcoded
kernel base address.

Base address of ntoskrnl.exe

In this code, we get the handle of device object to perform kernel-level operations.

Getting handle of device object

In this code, we get the ntoskrnl.exe base address by calling the above defined function and
by using the calculated base address, we find the PsSetCreateProcessNotifyRoutine. After
that, we find the PsSetCreateProcessNotifyRoutine address of sysmon driver
(Sysmondrv.sys) and Microsoft defender driver (WdFilter.sys).

Routine array address

After getting the registered callback for required driver, we use the vulnerability of driver
and patch the callback address with 0x0000000000000000.

USMAN SIKANDER 10

10

In this stage, we remove PsSetCreateProcessNotifyRoutine routine which is responsible
to notify and send telemetry when a new process is created. We can find the EDRs registered
callback routines and can remove them to blind the EDRs.

Practical Video:

Usman Sikander on LinkedIn: EDRs are complex solutions and key components of EDR
is divided into…

Terminate EDR Processes:

In this stage of arsenal, we are using and re-creating the spyboy technique to terminate the
edr processes. EDR processes are protected processes, we can’t terminate them even with
the highest privileges context (Nt-Authority). To terminate the EDR process we need kernel
level operations permission, so we can remove the protection flag of EDR process which is
Anti Malware ‘Protected Process-Light’ (PPL) and can terminate easily with administrator
permission. In this stage, we use spyboy technique which is utilizing the zam64.sys driver to
terminate the EDR processes. The driver contains some protection mechanism that only
allow trusted Process IDs to send IOCTLs, without adding your process ID to the trusted list,
you will receive an ‘Access Denied’ message every time. However, this can be easily
bypassed by sending an IOCTL with our PID to be added to the trusted list, which will then
permit us to control numerous critical IOCTLs.

I used the code of ZeroMemoryEx terminator. This guy reproduced the technique of spyboy,
you can find the code from this repository.

GitHub - ZeroMemoryEx/Terminator: Reproducing Spyboy technique to terminate all
EDR/XDR/AVs…

During my arsenal preparation, when I downloaded terminator compiled binary and
zam64.sys driver, MDE flagged them and removed them from disk. We found a lot of ways to
bypass it from security controls and terminate EDR processes. We highlight some of the
evasion tactics to bypass it but again how we bypassed DSE and static detection of
zam64.sys is not a part of this blog post.

This code explains the registration process and sending an IOCTL with our PID to be added
to the trusted list, which will then permit us to control numerous critical IOCTLs.

https://www.linkedin.com/posts/usman-sikander13_edrs-are-complex-solutions-and-key-components-activity-7227289675130916864-deG5?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_edrs-are-complex-solutions-and-key-components-activity-7227289675130916864-deG5?utm_source=share&utm_medium=member_desktop
https://github.com/ZeroMemoryEx/Terminator
https://github.com/ZeroMemoryEx/Terminator

USMAN SIKANDER 11

11

Register Process in trusted list

This code explains the function call using the device object handle and terminating the
EDR processes. EDR service is responsible to recreate the EDR processes, so you have to
run this in loop if you want to avoid the recreation of EDR process.

Practical Video:

Usman Sikander on LinkedIn: #edrkiller #malwaredevelopment #mdebypass
#cybersecurityawarness

Evasion Tactics of Terminator:

In this stage, we will highlight some evasion technique to bypass static detection of
terminator tool. We are not going to explain the method to bypass detection of vulnerable
drivers, because it can be used for illegitimate purposes. The purpose of this blog post is to
understand the tactic of BYOVD technique, what damage it can impose on system and how
APT groups are adopting these techniques to bypass defenses.

During my arsenal preparation, MDE detected the terminator binary because it is open
source and Microsoft defender updated its signature. Zam64.sys is also listed in loldrivers
and MDE don’t allow driver to load. But there are a lot of ways to bypass this protection which
is not part of this blog. So, let’s start and restrict only terminator EXE instead of zam64.sys
driver.

We noticed the behavior of MDE on every compilation. We found ZeroMemoryEX tool was
detected by MDE on three main things. One the defined array of EDRs processes, second the
print statement of termination, the last and important is where terminator get the handle of
device using symbolic link \\\\.\\ZemanaAntiMalware

https://www.linkedin.com/posts/usman-sikander13_edrkiller-malwaredevelopment-mdebypass-activity-7201848552522711042-vySE?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_edrkiller-malwaredevelopment-mdebypass-activity-7201848552522711042-vySE?utm_source=share&utm_medium=member_desktop

USMAN SIKANDER 12

12

To bypass the first detection, we just changed the variable name of array and redefined the
sequences of EDR processes. To bypass the symbolic link detection, we use reverse string
function which is reversing the string to bypass static analysis. Instead of passing the
aurgument to CreateFileA API as \\\\.\\ZemanaAntiMalware, we can pass this function
which will convert the reverse string on runtime.

Reverse String

To bypass the second detection, we remove the print statements.

Remove it

EDR solution looks for patterns, IAT table, known signatures, Strings and utilize yara rules to
detect the binary in static analysis, so we can bypass the malware in static detection by
understanding the detection criteria of EDR.

Mimikatz Driver (𝐦𝐢𝐦𝐢𝐝𝐫𝐯.𝐬𝐲𝐬) Load And Remove PPL Protection

In the last stage of arsenal, we utilize the driver created by Mimikaz author Benjamin Delpy.
Mimkatz is very well-known and favorite post-explitation tool of all penetration testers and
red teamers. But due to open-source, Mimikatz is very well-known for all AV/EDRs solution,
and it is very hard to use mimikatz in the presence of security controls. This stage is not to
bypass mimikatz itselft, but more focus on to bypass mimikaz driver which can be used to
remove lsass.exe PPL protection. If you want to learn about mimikatz evasion, we refere you
to our privious blog post mainly focused on to bypass mimikatz.

USMAN SIKANDER 13

13

Bypass “Mimikatz” using the Process Injection Technique

We apply the same technique to bypass Mimikatz driver that we adopted to bypass
vulnerable driver. We were successful in loading the Mimikatz driver and to bypass DSE
policy of Windows and successfully removed the protection of lsass.exe by using Mimikatz.

Practical:

Usman Sikander on LinkedIn: [𝑷𝑷𝑳 𝒂𝒏𝒅 𝑫𝑺𝑬 𝒗𝒔. 𝑴𝒊𝒎𝒊𝒌𝒂𝒕𝒛] We know, almost all…
𝑷𝑷𝑳 𝒂𝒏𝒅 𝑫𝑺𝑬 𝒗𝒔. 𝑴𝒊𝒎𝒊𝒌𝒂𝒕𝒛] We know, almost all the Pen-Testers are in love with
mimikatz and rubeus…www.linkedin.com

Note:

This post aims to provide a comprehensive understanding of how attackers leverage
vulnerable drivers to execute malicious operations This serves as a foundational example to
illustrate the broader concept of driver-based attacks and how EDR systems can be
compromised.

Conclusion:

This knowledge empowers red teams to develop more sophisticated attack scenarios,
testing the resilience of defenses. Blue teams, on the other hand, can leverage this
information to enhance detection capabilities, strengthen defenses, and improve incident
response procedures. The broader cybersecurity community benefits from a deeper
understanding of these threats, enabling the development of more robust security solutions
and countermeasures.

It’s essential to stay informed about the evolving threat landscape and to continuously adapt
defensive strategies to counter emerging techniques like BYOVD. By fostering collaboration
between red and blue teams and sharing knowledge within the cybersecurity community, we
can collectively strengthen our defenses against these advanced threats.

References:

GitHub - Offensive-Panda/NT-AUTHORITY-SYSTEM-CONTEXT-RTCORE: This exploit
rebuilds and exploit the…

Offensive-Panda - Overview
An infosec guy who's constantly seeking for knowledge. - Offensive-Pandagithub.com

Usman Sikander
Portfoliooffensive-panda.github.io

https://systemweakness.com/bypass-mimikatz-using-process-injection-technique-6d2a8415fcd6
https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F%3F-%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F-activity-7206609992513134594-PlQY?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F%3F-%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F-activity-7206609992513134594-PlQY?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/usman-sikander13_%3F%3F%3F-%3F%3F%3F-%3F%3F%3F-%3F%3F-%3F%3F%3F%3F%3F%3F%3F%3F-activity-7206609992513134594-PlQY?utm_source=share&utm_medium=member_desktop
https://github.com/Offensive-Panda/NT-AUTHORITY-SYSTEM-CONTEXT-RTCORE
https://github.com/Offensive-Panda/NT-AUTHORITY-SYSTEM-CONTEXT-RTCORE
https://github.com/Offensive-Panda
https://github.com/Offensive-Panda
https://offensive-panda.github.io/
https://offensive-panda.github.io/

USMAN SIKANDER 14

14

GitHub - RedCursorSecurityConsulting/PPLKiller: Tool to bypass LSA Protection (aka
Protected…

Terminator/Terminator at master · ZeroMemoryEx/Terminator

https://github.com/RedCursorSecurityConsulting/PPLKiller
https://github.com/RedCursorSecurityConsulting/PPLKiller
https://github.com/ZeroMemoryEx/Terminator/tree/master/Terminator
https://github.com/ZeroMemoryEx/Terminator/tree/master/Terminator

