
[Document title]

2024

MALWARE: BYPASS AV/EDR USING COMBINATION OF
MULTIPLE TECHNIQUES
USMAN SIKANDER
SR. OFFENSIVE SECURITY RESEARCHER

1

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Introduction

In this blog, I am going to explain multiple techniques to bypass AV/EDR/XDR security solutions.

As a red teamer and security guy, I always try to explore new methods and approaches to bypass

security controls and provide actionable mitigations to detect those techniques. My work is related

to offensive security, “Offense is the best defense”. I believe this article is going to help the red

team as well as the blue team.

I am going to make a defense evasion arsenal which is using direct syscalls, sandboxes bypass

techniques, Strong encryption and random procedure names, API hashing, Egg-Hunting and other

a lot of techniques to bypass AV/EDR’s. I will also explain the method to bypass Outflank well-

known tool Dumpert. Dumpert used direct syscalls to bypass security controls such as AV/EDR’s

user-mode hooking and create memory dumps of a lsass.exe process. Because Dumpert is a very

well-known and open-source tool most of the AV/EDR’s updated the signature. In my homework,

when I compiled Dumpert after touching the disk Microsoft Defender detected it. So instead of

changing the source code, making function and variable names random to change the signature of

Dumpert, I decided a different way to bypass it statically as well as dynamically. Before explaining

the techniques, Let’s talk about Windows APIs and Native APIs. I am not going to explain it very

deeply in this article because I have already explained the working and flow of API call in my

previous blog post.

AV/EDR Evasion Using Direct System Calls (User-Mode vs kernel-Mode)

Modern AVs and EDRs use a variety of approaches to accomplish both static and dynamic

analysis. They can examine many…medium.com

Applications in Windows system normally run in user-mode and to perform operations

applications used Windows APIs which are documented. Now these APIs call native APIs which

are located inside the ntdll.dll. Native APIs located in (ntdll.dll) are the last instance which can be

monitored by AV/EDR’s security solutions. Let’s take an example of Simple malware which is

doing process injection using Windows API calls such as VirtualAllocEx,

WriteProcessMemory, CreateRemoteThread. These APIs further interact with alternative API

calls which is in ntdll.dll. Functions located in ntdll.dll are a set of assembly instructions to call

the system level calls in kernel. Most of the AV/EDR’s hooked on Native API’s and redirect the

flow of program whenever an application calls this function to see the malicious behavior of

program. When new process spawned EDR’s load their DLLs in process memory to inspect the

behavior of program.

https://medium.com/u/675636f397de
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a
https://medium.com/@merasor07/av-edr-evasion-using-direct-system-calls-user-mode-vs-kernel-mode-fad2fdfed01a

2

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Defense Evasion Arsenal

Direct syscalls are always a hot topic for red teamers. In my arsenal, I used direct syscalls to bypass

user-land hooking of AV/EDR. I also used some techniques which will make malware analysis

harder. When we open binary with IDA-pro or binary parser statically and using string search we

can tell this binary is doing such task. To make static analysis hard, I used different techniques.

PART 1

I divided my work into two parts. The first part will explain the syscalls stub and code of my

implant with same native API functions name defined in ntdll.dll. This part is mainly focused on

to develop an exploit doing process injection using direct syscalls which can bypass user-mode

hooking of EDRs solutions but can be detected in static analysis of EDRs due to several reasons.

In the second part, I will mainly focus on evasion where I will overcome the challenges and reduce

3

EXPLORE TECHNIQUES TO BYPASS AV/EDR

the risk of on-disk detection of binary. I will use random names in my code, syscalls stub and all

required structures and definitions to make static analysis harder. One extra step that I will explain

in part 2 is Egg-hunt technique and random instructions to bypass on-disk or static analysis of

EDRs solutions. Let’s discuss our preparation for defense evasion arsenal.

Firstly, I created ASM/H pairs using SysWhispers2. SysWhispers2 use random functions name

every time and resolve syscalls dynamically. In this picture, you can see created assembly file of

syswhisper2. Function hash is used by global variable and resolving syscalls accordingly. The

name of procedures is same as Native API calls. Although this approach bypass AV/EDR user-

mode hooking but I realize that If I use these names in my implant Windows defender or other

security solutions can detect my binary in signature-based analysis and static heuristic analysis.

This is because security solutions are looking for patterns, signatures, strings and imports in static

analysis. So, I noticed my exploit was detected by Windows defender in static analysis because of

syscalls instruction defined in stub which is responsible to make kernel transit and my implant was

clearly showing the API names with well-known sequence used in process injection that can be

also a big indicator for any security solutions. So, I bypassed these types of detection in my second

part of this article. For now, let’s create our arsenal with same definitions

Defined Procedures

You can see WhisperMain function is responsible to resolve the function hash into syscalls and

make the call.

4

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Functions to resolve direct syscalls numbers

I wrote a code into C++ which is using direct syscalls. In my part 1, I used the same name in my

code and performed static analysis using IDA-PRO.

Calling with same names as ntdll.dll defined

After analysis my implant statically in IDA-PRO, I can clearly see the native APIs calls which

indicate the behavior of my binary. Malware analysts can easily understand that this binary is doing

injection in process. Because this combination is very well-known to perform process injection.

5

EXPLORE TECHNIQUES TO BYPASS AV/EDR

PART 2

As I mentioned above in part 1, I will use random procedures and functions names to make my

implant stealthier in part 2. So, this time, I changed the procedures names, changed the prototype

names and, I used egg-hunting and random instructions techniques to bypass the static analysis.

Because I am using Msfvenom generated shellcode so I will use AES encryption in my implant to

bypass the signature detection of EDRs. Furthermore, I used Anti-AV and Anti-Sandbox

techniques in my code. Now this part is mainly focused on defense evasion bypass using

combination of different techniques to bypass static and dynamic analysis.

Random Procedures Names

 RANDOM NAMES IN PROTOTYPES

6

EXPLORE TECHNIQUES TO BYPASS AV/EDR

You can see this time I used random functions names in my implant. I did this thing to make static

analysis harder for malware analysts and to bypass static analysis of AV/EDRs solutions.

Random functions names

Difficult to understand in static analysis

No Imports and String Searches

7

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Legacy Instruction

I used syswhispers2 to generate ASM/H pairs for direct syscalls. Firstly, I want to show the general

structure of syscalls stub.

General Pattern of Syscalls Instruction

This is pattern of kernel transit in 64bit OS defined in ntdll.dll. Syscalls instruction in this stub

might be interesting for AV/EDR’s to detect. So, I used “int 2Eh” legacy instruction to invoke

syscalls rather than using “syscalls” instruction to avoid on-disk detection of my binary.

Note: int 2Eh is used on 32bit OS to enter the kernel mode. On 64-bit, the same is obtained by

using syscalls

int 2Eh rather than syscalls

This technique is good to bypass on-disk detection of binary which is using syscalls. Maybe in

some cases AV/EDR’s don’t detect “syscalls” instruction but make it stealthier you can still use

“int 2Eh”.

8

EXPLORE TECHNIQUES TO BYPASS AV/EDR

int 2Eh in binary

Series of Instructions

Detection could be done by looking for the “mov r10,rcx” instruction and then inspect the next

instruction to determine if it was a syscalls, since this allowed to inspect the syscall number. I

didn’t face this thing in my homework or during malware development but still I am going to

explain this technique to bypass on disk detection.

I added a series of instructions in asm file created by syswhispers2. To bypass this type of detection

I am using a series of instructions. I am not moving “r10,rcx” directly, I am firstly moving

“r15,rcx” than “r14,r15” and so on to bypass the detection which is done by using syscalls

instruction pattern. The OS doesn’t really care so long as there’s a syscalls number in eax when it

transitions to the kernel.

Series of Instructions

9

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Random Instruction (nop)

Another technique is to bypass disk detection. I added “nop” instructions in my asm file. These

techniques also can help to avoid pattern base detection of syscalls. You can add multiple nop

instruction before invoking syscalls. These nop instructions will not affect to you code but these

are helpful to bypass detections which maybe done on pattern or regex based detection of general

syscalls instructions.

nop instructions in asm file

Egg-Hunt

Egg hunt will place random bytes using DB instruction in syscalls stub with syscalls instructions

and on run time it patches again those bytes with syscall instruction to transit into kernel. This

technique also helpful to bypass static analysis and regex-based analysis of AV/EDRs solutions

Egg-Hunting Technique

AES Encryption

10

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Although, I used direct syscalls and this technique bypasses most of the AV/EDR’s, but still I am

using well-known tool msfvenom to create shellcodes which are highly detected by AV/EDR’s.

So, I encrypted my shellcode using AES encryption.

AES

Decryption in C++

Anti-VM Techniques

Apart from encryption, I used three anti-vm techniques, one is checking size of ram others are

checking processing speed and core processors. You can change the number of cores and size of

ram accordingly, I am using 8gb ram condition in my code. If the size of ram is less than 8

programs will exist here.

Sandboxes bypass techniques

11

EXPLORE TECHNIQUES TO BYPASS AV/EDR

Execution

I tested these techniques on windows 11 against Microsoft Defender, MacAfee and Kaspersky but

no one was able to detect my implant. I was able to bypass static and dynamic analysis of these

security Solutions.

Windows Defender Bypassed

I injected my payload into explorer.exe. You can see my payload in memory address in

explorer.exe which is RWX.

Injected shellcode in explorer.exe

12

EXPLORE TECHNIQUES TO BYPASS AV/EDR

I also checked my binary on antiscan.me to check the detection rate of these techniques. But my

binary was fully undetectable.

https://antiscan.me/scan/new/result?id=DpzbbuU1wnXV

By using direct syscalls, sandboxes bypassing techniques, strong encryption and random

procedures names I was able to bypass EDR/XDR detection. Now in my last part, I also want to

explain the method which can be used to bypass Dumpert tool created by outflank.

BYPASS DUMPERT TOOL (OUTFLANK)

Outflank created a very amazing tool which used direct syscalls to create memory dumps but due

to open source almost every AV/EDR’s updated the signature of Dumpert. Instead of changing the

https://antiscan.me/scan/new/result?id=DpzbbuU1wnXV
https://medium.com/u/675636f397de

13

EXPLORE TECHNIQUES TO BYPASS AV/EDR

signature, I used another easy way to bypass it. This technique really works, and you will see

amazing results.

Firstly, I created independent shellcode of Dumpert into raw form using tool Donut created by

@TheWover. You just need a simple command to convert Dumpert.exe into raw shellcode.

Convert EXE into shellcode

So, to bypass static analysis of Dumpert I am doing in-memory execution. Dumpert itself uses

direct syscalls to create memory dumps but I also created my Injector which will load Dumpert

shellcode into remote process. This loader uses the same techniques which I have already

mentioned above.

Execution of Dumpert using Process InjectionLsass.exe memory dumps

14

EXPLORE TECHNIQUES TO BYPASS AV/EDR

This technique is also bypass AV/EDR’s because I used direct syscalls in my injector to bypass

user-mode hooking of AV/EDR’s.

CONCLUSION

Direct syscalls are mostly used by malware developers, red teamers and attackers to bypass user-

mode hooking of security controls. But in this blog, I also explained the other techniques which

can be used to make implant stealthier and more undetected. I explained some methods to bypass

on-disk detection and to bypass the well-known tool Dumpert.

References:

https://github.com/xenoscr/SysWhispers2/

https://github.com/outflanknl/Dumpert/tree/master/Dumpert

https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-
calls-and-srdi-to-bypass-av-edr/

https://github.com/Offensive-Panda

https://offensive-panda.github.io/DefenseEvasionTechniques/

https://github.com/xenoscr/SysWhispers2/
https://github.com/outflanknl/Dumpert/tree/master/Dumpert
https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/Offensive-Panda
https://offensive-panda.github.io/DefenseEvasionTechniques/

