Unveiling the Intricacies of AsyncRAT: A deployment in
Colombia by the Blind Eagle Cyber Group

......

Usman Sikander

Offensive security researcher

medium.com/@merasor07

linkedin.com/in/usman-sikander13/

1/8/2024

mailto:medium.com/@merasor07

Contents
Introduction

Capabilities

Technical Details and Chain flow

File Info:

AsyncRAT also known as by security vendors:

Flow of attack and execution:

Tools and Environment

Stage (async.exe)

Basic and Advanced Static Analysis

Basic Information

Packing

Detect-It-Easy

o L O i i i DA W W W W DD DN

Capa-Output

N

Static Analysis

Basic Dynamic Analysis

Procmon and Process Hacker

Advanced Dynamic Analysis

Run as Admin

Breakpoints:

Runtime Broker.exe

Loaded .NET Assemblies

Loaded Modules

Extracted TTP’s

MITRE ATT&CK MAPPING

Recreation and Security controls validation

Mitigation
YARA

Conclusion

W W W N N N DN DN DN = = = =
N O O vV © 0 N 00 nn W N M O O

Introduction

AsyncRAT is a sophisticated Remote Access Trojan (RAT), intricately developed using the C# programming
language. lts design is centered around an asynchronous operational framework, which grants cyber
attackers extensive remote access and control capabilities over targeted systems. This high level of control
enables the execution of a diverse array of malicious activities, including data exfiltration, system
manipulation, and surveillance.

The utilization of AsyncRAT has been predominantly linked to the cyber group known as Blind Eagle, also
referred to as APT-C-36. This group has been active since April 2018 and is believed to have its origins in
South America. Blind Eagle's operations are characterized by their persistent and targeted nature, focusing
on high-value targets across various critical sectors. Notably, their activities have included systematic cyber-
attacks against key Colombian entities, encompassing government institutions, the financial sector, the oil
industry, and professional manufacturing firms.

The group's methods exhibit advanced tactics, techniques, and procedures (TTPs), leveraging AsyncRAT's
capabilities to infilirate and compromise systems with precision. Their approach often involves spear-phishing
campaigns, exploiting software vulnerabilities, and using sophisticated social engineering techniques to gain
initial access. Post-compromise, they deploy AsyncRAT to maintain persistence, conduct reconnaissance, and
ultimately fulfill their malicious objectives.

Given the significant threat posed by Blind Eagle and their adept use of AsyncRAT, it's imperative for
organizations within their target spectrum to adopt robust cybersecurity measures. This includes regular
system audits, employee awareness training, and the implementation of advanced threat detection and
response systems."

This ersion includes a more in-depth exploration of AsyncRAT's functionalities, Blind Eagle's operational
tactics, and the broader implications for cybersecurity in the targeted sectors. Blind Eagle primarily uses
NjRAT, AsyncRAT, Remcos RAT, LimeRAT, and QuasarRAT in its campaigns. Blind Eagle’s modus operandi has
remained the same since its emergence, which indicates that it is comfortable conducting spear-phishing
campaigns as they continue to hit the target.

Capabilities
® AsyncRAT creates files inside the user directory
o AsyncRAT creates and modify system processes
o AsyncRAT creates persistence using scheduled task (if-admin)
e AsyncRAT creates persistence using registry (if non-admin)
® AsyncRAT utilizes the defense evasion technique Masquerading
® AsyncRAT utilizes the Virtualization/Sandboxes evasion techniques.
e AsyncRAT utilized the anti-analysis and anti-debugging techniques.
® AsyncRAT encrypts the configuration file using AES-256
e AsyncRAT uses the process manipulation techniques to evade defense
o AsyncRAT uses Command and control (C2) server to exfiltrate and install plugins.

Technical Details and Chain flow

File Info:

Basic properties (O

MD5 c0b9838ff/d2ddechbie296eac?47e5dé

SHA-1 76af794b85e4a84ba75c5703d11207b7a6798bf 2e

SHA-256 790680h82hci0786bh6af1b7ccPbdelbidelaséb0do5erer2ed1b1054443f6c5e3

Vhash 244036555511d08d2e1d104c

Authentihash 8c3474d7a%2ecdebdd10cb23c41475193eab307800b6d41dE55a9116d27 35760

Imphash f34d5f2d4577edéd%ceech16c1f5a744

S5DEEP 768:3u0+VTOKWNNWUbglimo2qjkbssiFZbbbawYK4dPImKA]bpgX3iEAQBC5eKX4BDZt:3u0+VT01Y2gmIKVmMKobmXSOB7KX+dzx
TLSH T163232A003BE8C12BF2BFAF7899F26245867AA2633603D68A1CCA51DTS713BCEPAL26FE

File type Win32EXE executable windows win32 pe peexe

Magic PE32 executable for MS Windows (GUI) Intel 80386 32-bit Mono/.Net assembly

TriD Generic CIL Executable (NET, Mono, etc) (60.4%) Windows screen saver (10.8%) Win&4 Executable (generic) (8.7%) Win32 Dynamic Link Library (generic) (5.4%) ...
DetectltEasy PE32 Library: .NET (v4.0.30319) Compiler: VB.NET Linker: Microsoft Linker (8.0) [GUI32]

File size 45.00 KB (46080 bytes)

PEID packer NET executable

AsyncRAT also known as by security vendors:

Security vendors' analysis (1)

Acronis (Static ML) (D Suspicious AhnLab-V3
Alibaba CD Backdoor:MSIL/AsyncRat.5258de8d AlYac
Antiy-AVL QD Trojan[Backdoor]/MSIL.Crysan Arcabit

Avast (\D Win32:DropperX-gen [Drp) AVG

Avira (no cloud) (D TRIDropper.Gen BitDefender
BitDefenderTheta (D Gen:NN.ZemsilF.36308.cmO@a0rCUlp Bkav Pro
ClamAy QD Win.Packed Razy-9625918-0 CrowdsStrike Falcon
Cylance QD Unsafe Cynet

Cyren (D W32/5amas.B.gen!Eldorado Drweb

Elastic (D Windows.Trojan.Asyncrat Emsisoft
eScan QD Generic.AsyncRAT.Marte.B.D5ABBD%3 ESET-NOD32
Fortinet QD MSIL/CoinMiner.CFQ!tr GData
Google lkarus
Jiangmin (D BackdoorMSIL.cxnh KZAntiVirus
K7GW (D) Trojan (005678321) Kaspersky
Lionic QD Trojan.MSIL.Crysan.mic Malwarebytes

Flow of attack and execution:

Do you want to automate checks?

QD Malware/\Win32.RL_Generic.C3558490
(D BackdoorRAT Async

QD Generic.AsyncRAT.Marte.B.DSA88D93
QD Win32:Dropperx-gen [Drp]

QD Generic.AsyncRAT.Marte.B.DSA88D93

(1) wazAlDetectiet.01

QD Win/malicious_confidence_100% (W

(1) Malicious (score: 100)

(T) Trojan Siggen?.56514

(1) Trojan.Agent ()

(1) A Variant Of MSIL/Agent CFQ
(T) MSILBackdoorDCRatD

(D) Trojan.MSILAgent

(1) Trojen (005678321)

(1) HEUR:BackdoorMSIL Crysan.gen

QD Generic.Trojan.MSIL.DDS

Investigations reveal that the initial phase of Blind Eagle APT's phishing campaign involves the dissemination
of a deceptive email. This email features a subject line in Spanish and contains an attachment: a password-
protected PDF. The PDF is designed to entice recipients with a seemingly urgent request to view an alleged
pending tax document. Upon opening the PDF, users are confronted with a URL that closely mimics the official
site of the Directorate of National Taxes and Customs. However, this link is fraudulent. When clicked, it
redirects the user to an alternative website. This site is responsible for deploying a secondary payload,
discreetly retrieved from a public Discord server. This secondary payload serves as a precursor to the final
stage of the cyber-attack. It facilitates the installation of AsyncRAT, completing the infection process. The
sophisticated nature of this method underscores the necessity for vigilance and robust cybersecurity measures,
particularly in recognizing and responding to phishing attempts. In this report, | got a sample which is

downloaded by clicking on phishing link and | try to perform technical analysis of the sample and extracted
the TTP’s utilized by blind eagle threat group.

exit
s @

es
Victim y
receive
virtual/sandbox

A

contains check

extract =="| check
— >

write

v
BAT [

Tools and Environment

e Flare-VM (Windows 10)
e REMnux (Simulator)

e dnSpy

e Cutter

o Detect-it-easy
e RegShot

o ExelnfoPE

e De4dot

e Capa

® Procmon

® Process Hacker

o TcpView
e PE Bear
e PE Studio

o Wireshark

& task schedule

E@

registry add
_— >

ﬁ_\jitime Broker.exe

| ﬁconnects

>

command and control (c2)

Stage (async.exe)

Basic and Advanced Static Analysis

Basic Information
async.exe:

SHA256: 79068b82bcf0786b6aflb7cc96delbfdelab6b0d95e7e72ed1b1054443f6c5e3
MD5: c0b9838ff7d2ddecbfe296eae947e5d6

CPU: 32-bits

Language: .Net programming language (c#)

Compiler-stamp: Sun May 10 05:24:51 2020 UTC

Interesting Strings:

e " /cschtasks /create /f /sc onlogon /rl highest /in "

e “Select * from AntivirusProduct”, “Select * from Win32_ComputerSystem”

o “CfXpd10bbWOrMPUDu4xOQVkVoERQrspS515RrSBc3XPré /11 2WdhfLin9IUpy8mtbVoZg8NI2Ui
tCoQT8mAILQ=="

e “5xU2z25Rov7sIOLBtk+8+vn4pnps2wv04q8onR2M1PeHt+fevvgEp)uqUq8M6Bdal 5SINbuF3jAH
GdE7FovijtQ=="

o " /tr " & exit\nuR\noisreVinerruC\swodniW \tfosorciM\erawtfoS”

e “\nuR\noisreVinerruC\swodniW \tfosorciM\erawtfoS”

Inspection: LoadModule, MemoryStream, ToBase64String, FileAccess, RSACryptoServiceProvider,
RtlSetProcesslsCritical

Packing

Detect-It-Easy

After opening the sample with detect-it-easy tool it shows me that the binary is not packed but there was at
some level | assumed it may be little bit obfuscated and there will be some random strings and junk data to
make it difficult for analyst.

Entry point
0040c72e

Entropy

Offeet
00000000

not packed(68%)

Offset Size Entropy Status
00000000 00000200 2556525 not packed
00000200 0D0GB0D
00002c00 0DDODSDD

Library: .NET({w 00006200 00000200
Compiler; VE.NET(-

Linker: Microsoft Li

10,000

Capa-Output

When | performed CAPA analysis on first stage of malware (WinDir.exe), it indicates that the binary is not
packed. The detail verbose analysis also tells the binary is obfuscated and it trigger most of the rules which
indicated that the binary is using these tactics and techniques according to MITRE ATT&CK framework. The
CAPA analysis also indicates that the binary is performing the system discovery, file discovery and defense
evasion like obfuscation and masquerading files. Capa output also indicating that the sample has Anti-VM
and Anti-Behavioral analysis techniques to make malware analysis harder for analyst. Capa output trigger
multiple TTPs that is utilized by the malware, at this point | am not sure about these TTPs. After perform
behavioral and dynamic analysis | can say about the actual behavior of the malware.

Static Analysis

Before performing dynamic analysis and first detonation of malware, | opened the malware in dnSpy-x86
to perform some advanced static analysis. Because the binary is .NET and it was not packed by any custom
or commercial packer so | got the clear code by using the Decompiler and debugger. Before debugging the
code line by line and perform dynamic analysis | started looking into functions and try to understand the
working of the malware. Before wasting anytime, | just go to the entry point which was main function and at
the very first line there was “for” loop which is running 4 times from 0-3 and each time sleep for 1 sec. In
short it was sleeping 4000 milliseconds before executing anything. This technique could be leverage by
threat actors to bypass defense mechanisms.

Program X
Client

After the loop there was a “if” condition which was checking the function return value. If the function
InitializeSettings() is returning true then it perform rest of the working, if the Boolean value is false it exiting
the program here.

Program >

When | opened the function to check what actually this function is doing and | found AsyncRAT configurations.
These configurations contain ports, hosts, versions, installation, MTX, certificates and also other stuff which
were encrypted with AES-256. At this stage, | don’t know the values of these configurations.

Next step it was created the MUTEX and at this stage | don’t know what value it was using because the
MUTEX value was encrypted with AES-256.

MutexControl X

Client.Helper

If the MUTEX is created successfully then it executes next instructions otherwise it exited the program. The
next instructions were performing anti-analysis, anti-debugging and anti-sandboxing techniques. These
techniques | will show you in my advance analysis and how to bypass these checks to contfinues the analysis.

* X Program X

b =0 Type References

After above mentioned checks the malware was installing itself and doing the stuff. If the above all checks
return true then it was performing installation and some persistence techniques.

v X Program X

ferences

After installing and performing some persistence, it was checking if the malware is executing with admin
privileges and the value of a public static variable (BDOS) is true then | was making itself as a critical
process by utilizing the native API calls from ntdll.dll. | already analyzed a lot of malwares which used this
technique to evade AV/EDR because only limited windows legitimate process is running as critical processes
and by terminating those processes you will get BSOD (Blue screen of death). Maybe the variable is
indicating the same name but threat actors misspelled it.

Program X

leferences

nces

In the last step of my static analysis there was loop designed to maintain a network connection in a client-
server model. Here's a breakdown of its functionality:

Y/
°

for (; ;) - This is an infinite loop. It will continue to run until the program is manually stopped or an
external condition causes it to exit.

try - This block is used to handle any exceptions that might occur during the execution of the code
inside it. This is a common practice to ensure the program doesn't crash unexpectedly.

if (IClientSocket.IsConnected) - This condition checks if the client socket is not connected.
ClientSocket.Reconnect(); - If the client socket is not connected, this line attempts to reconnect the
client to the server.

ClientSocket.InitializeClient(); - This method likely initializes the client socket, setting up necessary
parameters or configurations for the connection.

Thread.Sleep(5000); - This line pauses the execution of the current thread for 5000 milliseconds (or
5 seconds). It's likely used here to prevent the loop from overwhelming the CPU or network with
continuous connection attempts.

< Program X

This code snippet is a more detailed implementation of a method called InitializeClient() in a client-server
networking context. The method is structured to establish a TCP connection with a server, potentially involving
secure communication over SSL/TLS. Here's a breakdown:

R/
0‘0

Socket Initialization: A TCP socket is created with specified buffer sizes for sending and receiving
data. The SocketType.Stream and ProtocolType.Tcp indicate it's a TCP socket, suitable for continuous
streams of data.

Server Connection Logic: The method includes logic for choosing server addresses and ports. If
Settings.Pastebin is set to "null", it randomly selects a server address and port from a list defined in
Settings.Hosts and Settings.Ports. If Settings.Pastebin is not null, it fetches a server address and port
from a Pastebin URL.

+* Domain Name Validation: The code checks if the chosen server address is a valid domain name. If
it is, it resolves the domain name to an IP address and attempts to connect to it. If not, it directly
attempts to connect to the provided address.

%* Catch Blocks: There are several empty catch blocks which are not handling exceptions. This could
lead to silent failures where errors are not logged or addressed.

% SSL/TLS Setup: If the connection is successful, it sets up an SSL/TLS stream for secure communication,
authenticating the server's certificate. The specifics of the SSL/TLS protocol version and other
parameters are configured here.

+* Data Transmission Setup: The client prepares to send and receive data. This includes setting up data
buffers, initiating a keep-alive packet mechanism, and starting a timer for sending pings.

% Read Server Data: The client begins asynchronously reading data from the server, using the
BeginRead method on the SSL stream.

+» Connection Status: The client's connection status (IsConnected) is updated based on whether the
connection is successfully established or not.

v X ClientSocket X

Basic Dynamic Analysis

Procmon and Process Hacker

As an offensive security researcher, | always prefer Procmon, process hacker, TcpView and Wireshark in my
first detonation of malware sample which | analyze. When | executed the sample and captured all traffic
using Wireshark, captured the whole host-based activities using Procmon and network connections using
TepView, | noticed some interested activities on Procmon. | applied filter on Procmon to check either AsyncRAT
write any file or downloading any file on disk at runtime. | noticed that the sample wrote two file one with
the name of “Runtime Broker” in %APPDATA% and secondly it created batch file with the name of
“tmp8BAF.tmp.bat” in temp folder. When | checked registry changes, | noticed that the malware was setting
registry value with the same name of EXE which it created in %APPDATA%. This registry key is used to create
persistence on system, so at this point | was sure that the malware is creating persistence by adding the
“Runtime Broker.exe” in the registry path
“HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Runtime Broker”

B Process Monitor - Sysinternals: www.sysinternals.com - x
File Edit Event Filter Tools Options Help
BEHILNBN YAO & £ L B - M
Time: Process Name PID Operation Path Resutt Detai ~
b SUCCESS AllocationSize: 1.3.
e pp..C:\ 132 SUCCESS SyncType: SyncTy.
= ReadFile C 3_v4.0.30319_ 525357849 dl SUCCESS Offeet: 12,438,528,
' ReadFile C: 5_v4.0.30319_ 5d27\System.ni dil SUCCESS Offset: 9,041,408,
“ ReadFile C: s_v4.0.30319_ y nidl SUCCESS Offset: 9,033.216.
= ReadFile C 3_v4.0.30319_ 1bb432&:s§34339m2535c5d2' \System.ni dil SUCCESS Offget: 1,163.776.
' ReadFile C: 5_v4.0.30319_ 5d27\System ni dil SUCCESS Offset: 6.252.032.
%+ ReadFile C: s_v4.0.30319_ T\Sys nidl SUCCESS Offset: 5,535,232,
“ ReadFile C: s_v4.0.30319_ b 482866 %2 4336F 0126365027\ System ni dil SUCCESS Offset: 8,431,104,
= ReadFile C s_v4.0.30319_ 1bb 48280624336 012636¢5d27\System ni dil SUCCESS Offset: 2.016.768.
' ReadFile C: 5_v4.0.30319_ 5d27\System.ni dil SUCCESS Offset: 5,871,104,
= ReadFile CN s_v4.0.30319_ - Tbb 48286:6%a 43360 12636¢5d27\System ni dil SUCCESS Offset: 5,903.872.
= ReadFile C s_v4.0.30319_ 1bb 48280624336 012636¢5d27\System ni dil SUCCESS Offset: 6,002.176.
' CreateFie. C:\Users'\shaddy \AppData'\Roaming\Runtime Broker exe SUCCESS Desired Access: R.
= QueryNetwor Jeersshac pData Hoaming\Runfime Broker exe SUCCESS CreationTime: 1/2/.
s CloseFile C:\Users'\shaddy\AppData'\Roaming\Runtime Broker exe SUCCESS
s CreateFie. C: Users shaddy \AppData‘\Roaming\Runtime Broker exe SUCCESS Desired Access: R.
C Aopl ker exe SUCCESS Agtributes: A, Repa.
s CloseFile C: u:ers shaddy \AppData\Roaming\Rurtime Broker exe SUCCESS
s CreateFile. C:\Users'shaddy\AppData‘\Roaming\Runtime Broker exe SUCCESS Desired Access: G.
s CreateFile C:\Users'\shaddy\Desktop“async exe SUCCESS Desired Access: G.
“ QueryStandard|...C:\Users'\shaddy\Desktop\async exe SUCCESS AllocationSize: 49,
= ReadFile C:\Users\shaddy\Desktop'async exe SUCCESS Offset: 0, Length: 4.
1 CloseFile C:\Users\shaddy\Desktop\async exe SUCCESS
WiiteFile C:\Users\shaddy'\AppData\Roaming\ Runtime Broker exe SUCCESS Offset: 0. Length: 4.
W CreateFie T0sers aha pUata Local lemp SUCCESS Desired Access: R.
' QueryBasicinfor.. C:\Users'\shaddy \AppData\Local \ Temp SUCCESS Creation Time: 9/25.
% CloseFile C:\Users'shaddy\AppData'\Local\ Temp. SUCCESS
s CreateFile C:\Users\shaddy\AppData\Local\Temp\tmp8BAF tmp SUCCESS Desired Access: G.
 CloseFile C:\Users\shaddy\AppDataLocal \Temp\tmp8BAF tmp SUCCESS
%+ ReadFile C: s_v4.0.30319_ dl SUCCESS Offset: 12,545,024,
s CreateFile C:\Users\shaddy\AppData\Local\ Temp\tmp8BAF tmp bat SUCCESS Desired Access: G.
™ WiiteFile C:\Users\shaddy\AppData\Local\Temp\tmp8BAF tmp bat SUCCESS Offset: 0. Length: 1
1 CloseFile C:\Users\shaddy\AppData‘\Local\Temp\tmp8BAF tmp bat. SUCCESS
= ReadFile CN 5_v)_ - Tbb 48286:6%a 43360 12636¢5d27\System ni dil SUCCESS Offset: 7.403.008.
= ReadFile C - Tbb 482806 %2 43367 012636c5d27\System ni dil SUCCESS Offget: 1,639.936.
' CreateFie C: Users \shaddy'\AppData\Local Temu AmDBBAthD bat SUCCESS Desired Access: R.
Local pbat SUCCESS Creation Time: 1/7/.
s CloseFile C ugerg shadﬂy ADDDa\a Local\Temp\tmp8BAF tmp bat. SUCCESS
s CreateFile. C:\Users\shaddy\AppData‘Local\ Temp\tmp8BAF tmp bat SUCCESS Desired Access: R.
QueryBasiclnfor.. C:\Users\shaddy'\App Data\Local\ Temp \tmpBBAF tmp bat SUCCESS CreationTime: 1/7/.
s CloseFile C:\Users\shaddy\AppData\Local\ Temp\tmp8BAF tmp bat SUCCESS
s CreateFile. C:\Users\shaddy\Desktop SUCCESS Desired Access: R.
' QueryBasicinfer.. C:\Users'\shaddy\Desktop SUCCESS Creation Time: 9/25...
s CloseFile C:\Users\shaddy'\Desktop SUCCESS
s CreateFie C:\Users\shaddy\AppData\Local\Temp\tmp8BAF tmp bat SUCCESS Desired Access: R.
™ WiiteFile C: Users \shaddy\AppData‘Local\ Temp \tmp8BAF tmp bat SUCCESS Offset: 0. Length: 4.
= SSERAOTFIET P! =) 2 SUCCESS EndCfFile: 1680
- pp...C: U shaddy D: Local’ tmp bat. SUCCESS SyncType: SyneTy.
G pp...C:\Us Local’ tmp bat. FILE LOCKED WI... SyncType: SyncTy. N

| noticed some connection request over TCP, at this stage | can say the malware maybe was trying to connect
with this IP address “217.195.197.70" using different port like 6606, 8808 and 7707. The malware was
trying to create sockets.

[Apply a display filter ... <Ctrl-/> =

No. Time Source Destination Protocol _Length Info
4 5 T 7
1926 964.525926471 VMware EG 29:39 VMware_84:e0:81 60 WhD haS 192 168 146.1287 Tell 192 168 146 127
1927 964525961271 VMware_84:¢0:81 Viiware_86:29:39 42 192.168.146.128 is at 00:0c:29:84:¢0:61
[

192.168

6 562 192. 11 14
1934 978.471277217 . 192.168.

1937 582 525553545

1541 988. 488557775 . . .128 192.168.
4

43 6 21 E smiss t s
1944 990.526307913 VMware 86:29:39 VMware_84 : 60 Who has 192 168 146.128? Tell 192.168. 146 127
1945 990.526352523 VMware_84:e8:81 VMware_86:29: 39 42 192.168.146.128 is at 00:0c:29:84:€0:81

Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ens33, id @
Ethernet II, Src: VMware_86:29:39 (00:0c:29:86:29:39), Dst: VMware_84:e0:81 (©9:0c:29:84:e0:81)
Internet Protocol Version 4, Src: 192.168.146.127, Dst: 217.195.197.70

Transmission Control Protocol, Src Port: 61865, Dst Port: 7707, Seq: ©, Len: 0

0800 00 Oc 29 84 €0 81 00 Oc 29 86 29 39 [LNLEE 45 00)))olE E
00 34 68 8c 40 00 80 06 a@ ©5 cO a8 92 /T d9 c3 4h.@
c5 46 ee 89 1e 1b 6e 5F 41 61 60 00 00 00 80 02 F n_ Aa
c8 00 f8 7f 00 €0 02 04 05 b4 01 03 03 00 01 01

To make sure network activity and which process is responsible for making connection on above mentioned
IP address, | checked all processes network activities by using one of my favorite tools TcpView. | noticed
that the process with the same name “Runtime Broker.exe” was trying to connect with the same IP address
over TCP on same ports that | have mentioned above. This was continuously sending the sync packets to
initiate the TCP connection. At that point, | was sure that this process was responsible for the rest of the
malware activities and connecting with the command-and-control server.

Process Name ProcessID Protocol State Local Address Local Port Remote Address Remote Port Creste Time Module Name Sent Packets Recv Packets Sent Bytes a
W svchost.exe a6 TP Listen 0000 135 0000 0 RpcSs

7 System 4 TP Listen 192.168,146.127 139 0000 0 System

7 svehost.exe & TP Listen 0000 5040 0000 0 CoPSve
B lsoss.exe 664 TP Listen 0000 29660 0000 0 Isass.exe
7 wininit.exe sS4 TP Listen 0000 49665 0000 0 /772024 T4G0BAM wininit.exe
7 suchost.exe 24 TCP Listen 0000 49666 00.00 0 /772024 1:46:09AM Eventlog
B suchostexe 1240 TCP Listen 0000 29667 0000 0 1/7/2024 1:4610AM Schedule
1 spoolsv.exe 220 TP Listen 0000 29668 0000] 24 14612 AM - Sposer
7 senvices.exe 64 TCP Listen 0000 29669 00.0.0 0 1/7/2024 14614 AM services.exe
0

T System T TP Tisten 0000 5 0000 o TETAAM System

i swchost.exe 8% TCPVG Listen 135 0 /772024 14608 AM RpcSs

W system 4 TP Listen a5 0 1/7/2004 1:46:14AM System

7 lsass.exe 664 TCPvE Listen 29660 0 1/7/2024 14608 AM lsass.exe
W wininit.exe 504 TCPVE Listen 29665 0 /772024 T4G0BAM wininit.exe
7 suchost.exe 1204 TCPVE Listen 29666 0 1/7/2024 1:46:09AM Eventlog
B suchost.exe 1240 TP Listen 29667 0 24 1:46:10AM Schedule
7 spoolsv.exe 280 TP Listen 49668 0 24 114612 AM - Sposer
T senvices.exe 64 TCPVG Listen 49669 0 /772004 14618 AM services.exe
W sehost.exe 4900 uDP 0000 23 24 1:56:13AM W32Time
1 System 4 uop 192.168.146.127 137 24 1:46:05 AM System

7 system 4 uop 192,168,146.127 138 % 1/7/2024 1:46:05AM System

7 suchost.exe 28 upp 0000 500 * 1/7/2004 1:46:13 AM IKEEXT

B suchostexe 476 UDP 127.001 1900 * /7/2024 1:46:35 AM SSDPSRV
W svchost.exe 46 uop 192,168,146.127 1900 * 24 14636 AM SSDPSRV
7 suchost.exe 228 UDP 0000 4500 ~ 1/7/2024 1:46:13AM IKEEXT

W sehost.exe 820 uop 0000 5050 * 24 1:4814AM CDPSve
B suchost.exe 1064 UDP 0000 5353 * 24 1:46:11 AM Dnscache
i swchost.exe 1964 UDP 0000 5355 * 1/7/2024 1:46:11AM - Dnscache
7 suchost.exe 476 UDP 192.168,146.127 61208 * 1/7/2004 1:46:35 AM - SSDPSRV.
B suchostexe 4776 UpP 127.004 61208 * 1/7/2004 1:46:35 AM SSDPSRV.
i svchost.exe s uop 127004 64663 1/7/2024 1:46:13AM iphipsve
7 suchost.exe 4300 UDPvS 23 1/7/2024 1:56:13AM W32Time

After my first detonation of sample, | have some idea about the malware that it was creating two file one
is batch file and the other was .exe file. Also, it was adding some registry value for persistence and trying
to create TCP connection with command-and-control server on different Ports. When | checked this IP on
virus total most of the vendors was indicating it as a malicious IP address and virus total was showing me
the IP is from Turkey according to the ASN.

2]

5y

DETECTION

Join the VT Community and e

DETALS

= Similar -

3 Graph

® APt

Security vendors’ analysis

CROF

RELATIONS

njoy addition:

COMMUNITY 2

mmunity insights and cr

Do you want to automate checks?

When | checked the process tree, | noticed that the process was executing cmd.exe, timeout.exe and the
same file Runtime Broker.exe in its child hierarchy. At that point | don’t know what is full working and code
structure of Runtime Broker.exe and who is responsible for running other process. It will be more cleared to

me after performing debugging and advanced dynamic analysis of the malware.

= n:async exe (2140) C:\Users'shaddy®, ‘ DESKTOP-002IH... "Ci\Users\shaddy... 1/7/2024 10:38:0... 1/7/2024 10:38:1...
= ga% omd exe (4180) Windows Comma... C:\Windows\Sys ‘ Microsoft Corporat... DESKTOP-002IH. .. C:\Windows\syst... 1/7/2024 10:38:1... 1/7/2024 10:38:1
4 Conhost exe (8472) Console Window ... C:\Windows'Syst... ‘ Microsoft Corporat... DESKTOP-002IH... \7MC:\Windows\... 1/7/2024 10:38:1... 1/7/2024 10:38:1...
& timeout exe (4240) timeout - pauses ... C:\Windows'Sys. ‘ Microsoft Corporat... DESKTOP-0D2IH. . timeout 3 1/7/2024 10:38:1... 1/7/2024 10:38:1
® | Runtime Broker.exe (5548) C:\Users'shaddy _ DESKTOP-002IH... "C:\Users\shaddy... 1/7/2024 10:38:1... n/a
1§, msedge exe (252) Microseft Edge C:\Program Files {... _ Microscft Corporat... DESKTOP-002IH... “Program Files ... 1/7/2024 10:00:4... 1/7/2024 11.004...
(., msedge exe (1576) Microsoft Edge C:\Program Files { _ Microsoft Corporat... DESKTOP-002IH... "C:\Program Files .. 1/7/2024 10:00:4... 1/7/2024 11:00:4.
§ msedge exe (5708) Microscft Edge C:\Program Files (... _ Microscft Corporat... DESKTOP-002H... “C:\Program Files ... 1/7/2024 10:00:4... 1/7/2024 11:00:4...
£, msedge exe (2692) Microsoft Edge C:\Program Files { _ Microsoft Corporat... DESKTOP-002/H... "C:\Program Files .. 1/7/2024 10:00:4... 1/7/2024 11:00:4
(., msedge exe (5188) Microsoft Edge C:\Program Files { _ Microsoft Corporat... DESKTOP-002IH... "C:\Program Files .. 1/7/2024 10:00:4... 1/7/2024 11:00:4.
£, meedge exe (1052) Microseft Edge C:\Program Files {... _ Microscft Corporat... DESKTOP-0D2IH... "C:\Program Files ... 1/7/2024 10:00:5... 1/7/2024 11:00:4...
& msedge exe (6580) Microsoft Edge C:\Program Files (. MMM VMicrosoft Comporat... DESKTOP-002IH. . "C:\Program Files ... 1/7/2024 10:00:5.. 1/7/2024 11:.00:4

Advanced Dynamic Analysis
Run as Admin

| started advanced dynamic analysis of sample using dnSpy-x86. Dnspy is one of the best debuggers and
Decompiler for .NET binaries. AsyncRAT.exe is .Net binary so | open it using dnSpy, In my static analysis, |

noticed that the program was looking admin privileges also so | decided to breakdown my analysis into two
parts first one to run as a admin and check all the behavior and the second run as normal privileges and
check what is the different and how the malware is behaving in both conditions. The flow of the entry was
same that | mentioned in my static analysis. First creating some sleep, then initializing its configuration,
creating mutex, checking virtualized environment, installation, setting the process as critical and at the end
continuously trying to connect with the server. So let start debugging set breakpoint on each step and try to
decrypt the configuration and see the behavior of malware.

Breakpoints:

| start analysis step by step and put breakpoints. First, | wanted to know about the configurations file that it
was initializing and checking if everything is good then go to next step. So, | put breakpoint on if condition
where it was checking either the function is returning true or false.

~ X Program X

-

Client

Following the execution flow | step-into this function and there were configurations at this point all were
encrypted with AES-256. So | put breakpoints on decryption function which was returning decrypted values
of all configuration and execute the flow and extract the decrypted value, let’s check one by one what was
the actual configuration.

~ X [Settings X

Client

B
B
B
E]
B
B
[c
B
B s
LAE
B
B s
(B
=
Ty

String(input)));

After successfully starting the program, | decrypted value one by one so | can clearly understand the
working of the malware. When | decrypted the Ports on which the malware was trying to communicate with
the C2 server over TCP, these ports were same that we analyzed in our first detonation.

v X Seftings X

retumned

returned

When | follow the execution, | found that it was trying to connect with the same IP address that we found in
TepView. It means the malware hardcoded the c2 server IP and ports but in encrypted form to which it was
trying fo create socket.

Assembly Explorer v X Seitings X
) = System;
System. Security .Cryptography;
PE System. Security .Cryptography. Xse9certificates;
[@ DOS Header System. Text;
[File Header Client. Algorith;
[Optional Header (Client.Helper;

=)

Secti

[secti

Client

BEEEBEEEE

b £ Type References
b o0 References
P} -

4 {} Client

b 4g Program
3

4 {} Client.Algori

0% -
Client Handle_Packet
Client Hel

b % A, A e e

e D J System TextEncoding returned y coding System Text UTF8Encoding

Locals

b &1 System retumed

b @1 Client Algorithm A t returned il
System.Text Encoding, g retumed

©ilag

After decrypting the next value which was some variable with name version, it was decrypting the version
value. Maybe this value is using while creating connection with the C2 server.

Assembly Explorer v X Seftings X
4P a8l - Systen;
400 System.Security.Cryptography;

m.Security.Cryptography. X5@9Certificates;
DOS Header System.Text;
File Header Client.Algorithm;
Optional Header (32-bit) Client.telper;
Sectior

4

Client

FEEFEDEEEEEEEEES

b 20 Type References
b 20 References
>} -

4 {} Client

b g Program
>

4 {} Client Algorithm
»

4 {} Client.Connection
» ® 0% -
} Client Handle Packet
} ClientHelper
b %, Anti_Analys Name Trpe
b b £ System TextEncoding.TF.get returned ystem. coding ystemn. Text UTF2
b @ System returned
b) Client Algorithm.Aes256. Decrypt returned
System.Text.Encoding.GetString retumed

Locals

b
<

© flag

When | decrypted the next variable with the name install which was using into function of malware
installation. This was retuning Boolean value “true” after decrypting. When malware initialize its
configurations by default the declared value of this variable is true.

Assembly Explorer - X [Seftings X
4 (T 2801000 . System;
4 System. Security.Cryptography;
System. Security.Cryptography. X5eeCertificates;
DOS Header SEILIEEY
File Headler 3“": :1§°“‘”M‘»
ent. Helper;

4

Optional Header (32-b

Client

PEEFEPEEPEEEDEDE 3

b 20 Type Refe
b o0 References

00% -
Client.Handle_Packet

Locals
Client Helper

Name lue e
b & System Text.Encoding. returmed System Text.UTF8Encoding System Text.UTF8Encoding
b) System. retumed
b) Client Algorithm.Ae ot retumed
String returned

Now | decrypted the next value of configuration which was using to created MUTEX. Malware uses mutex
for different purposes for example synchronization of instances, or if the same instance is already running
or run the close the program etc. The sample was creating the mutex with the value of

"AsyncMutex_6SI8 OkPnk"

Debug e 2 - P Continue

v X |Settings X

PE
@
B
&
@
@
B
[c
@ s
& s
bR st
B s
@ s
& s
B s

After that there was a variable with the name of Pastebin which was returning the null after decrypting
maybe this was something that was filled when the connection established.

= 9
File Edit : e) = G - b Continue

v X |Settings X

. ae5256. Decrypt(] Pastebin)j

®UTF8Encoding t.UTF8Encoding

The next value was for anti-vm and anti-sandbox. After decrypting the value, it was returning the Boolean
“false”. | was surprised at this point maybe this value should be true by default to check virtualization or
sandboxes. | have to make this value false anyway to perform my analysis, this step is called patching the
malware.

Debug

Client

. aes256 . Decryp

00% -

Locals.

m Text.UTFEncoding

After that there was a BDOS variable after decrypting it was returning the value false by default. This is
something which was using to make a process critical. Maybe all these values will be true in other .exe which
this malware was creating with the name of “Runtime Broker.exe”.

- % [Settings %
Client

. Text.UTFBEncoding

At the end, there was variables with the name of Serversignature and ServerCertificate. After decrypting
value, | got the certificate which was using to connect with the c2 server over TLS/SSL. All data was sending
and receiving over encrypted form. | am attaching both screenshots so you guys can see the certificate and
signatures values which was using during the connection creation.

(=) 32-bit, NET
File Edit View Debug Window Help @ P Continue

Assembly Explorer ~ X Settings

[8) DOS Header
[8) File Header
[E] Optional Header (2-bi1)

EEEREDEEE

b8 Type References
b0 References

vég

4 () Client.Connecti
b g @02 00% -
P {} Client.Handle § Fs(ket

Local
4 {} ClientHelper ocals
3

Name Type
b K SystemText.Encoding. retumed y 3] g System.Text.UTF8Encoding
b @ System returned 0
b & Client Algorithm A ot returned A il
System Text Encod na retumed
@ flag

Edit View Debug Window Help - P Continue

Assembly Explorer - X [Seffings X
4T a8(-
Pl

419 pe

[DOS Header

File Header

Optional Header (32-bit)

PEDEEEDEEDEEE

_cectificate))) |

b 28 Type References
b 80 References

0% -
ient.Handle_Packet

ient. Helper
Anti_Anah

Name
b & System.Text.Enc .UTF Lget returned

b &1 System returned
> €1 Client Algorthm.A crypt returned
System Text Encoding ng retumed

@ flag

}
3
b
}
3
3
}
3
i Locals
3
3
3
b
3
3
3
b

At the end of this function, there was a verifyHash() function which was checking the integrity of certificates
and signatures of server before returning true or false. If the certificate value is same then it returns true.

=
Fie Edit P i

- x [Sallings %

After completing the initialization function, | forward to the next instruction there was if statement which was
checking either the mutex is successfully created or not. If the mutex is not created it stops the execution of
program. So | set the breakpoint of CreateMutex() function and see the returning value to continue the flow
of program execution.

v % MutexControl X

Client.Helper

flag;

return flag;

lCEoEEEDEED S |

After successfully creating the mutex with value that | mentioned in my above analysis the program now
checking and execution RunAntiAnalysis() which was checking different checks either the malware is running
in virtual or sandbox environment then it will exit. Let check the each anti-vm and anti-sandbox techniques
deployed by this malware sample.

In this function there were 5 functions executing. All these functions are checking different conditions and
returning the value of true or false based on the environment in which the malware was running. Let’s discuss
the conditions one by one.

~ X Anti Analysis X
- Client.Helper

C# method named IsSmallDisk that checks if the system drive has a total size less than or equal to
61,000,000,000 bytes (approximately 61 GB).

Defining Size Limit: long num = 61000000000L; sets the size limit (61 GB) for what is considered a 'smalll
disk'.

Getting System Drive Size: Path.GetPathRoot(Environment.SystemDirectory) gets the root path of the
system directory (usually the drive where the operating system is installed).

new Drivelnfo(...).TotalSize creates a Drivelnfo object for the system drive and retrieves its total size.

Size Comparison: if (new Drivelnfo (Path.GetPathRoot(Environment.SystemDirectory)).TotalSize <= num)
checks if the total size of the system drive is less than or equal to 61 GB. If the condition is true, return true;
is executed, indicating that the disk is considered 'small'.

<= num)

IsXP method that checks if the operating system of the computer is Windows XP

Checking Operating System: new Computerinfo().OSFullName.ToLower() creates an instance of
Computerinfo and retrieves the full name of the operating system, converting it to lowercase.
.Contains("xp") checks if the OS name contains the substring "xp".

Returning True for Windows XP: If the condition if (new
ComputerInfo().OSFullName.ToLower().Contains("xp")) is true, which means the operating system name
includes "xp", the method returns true. This indicates that the operating system is Windows XP.

After that DetectManufacturer method intended to determine if the computer is a virtual machine based on
its manufacturer and model.

Using Statements for Resource Management: ManagementObijectSearcher is instantiated with the query
"Select * from Win32_ComputerSystem". This object is used to query WMI (Windows Management
Instrumentation) for information about the computer system.

ManagementObijectCollection is obtained from the ManagementObijectSearcher object, containing the
results of the WMI query.

lterating Over Management Obijects: The method iterates over each ManagementBaseObiject in the
ManagementObijectCollection. It retrieves and converts the Manufacturer property to lowercase and stores
it in the text variable. The Model property is also retrieved for further checks.

Checking for Virtual Machine Manufacturers: The method checks if the manufacturer is "Microsoft
Corporation" and the model contains "VIRTUAL" (indicating a Microsoft virtual machine, like Hyper-V). It also
checks if the manufacturer's name contains "vmware" or if the model is "VirtualBox". If any of these conditions
are met, the method returns true, indicating the system is likely a virtual machine.

The DetectDebugger method designed to check if the current process is being debugged.
NativeMethods.CheckRemoteDebuggerPresent(Process.GetCurrentProcess().Handle, ref flag); is called. This
method is presumably a part of a custom class NativeMethods and is expected to perform a check to see if
the current process (Process.GetCurrentProcess().Handle) is being debugged. The result of this check is stored
in flag. After the call, flag2 is set to the value of flag. If the CheckRemoteDebuggerPresent method
determines that the process is being debugged, flag will be true, and thus flag2 will also be set to true.

And in the final the DetectSandboxie method designed to detect whether the application is running within
Sandboxie, a popular sandboxing software. NativeMethods.GetModuleHandle("SbieDIl.dII").Tolnt32() is
called to get a handle to the module "SbieDIl.dII", which is a known component of Sandboxie. .ToInt32() I=
0 checks whether the handle is non-zero. A non-zero value indicates that the module is present in the process's
address space, suggesting that the application is running within Sandboxie. If the module is found, flag is set
to true. Otherwise, it is set to false.

After that there was a condition that was checking if the install variable is true then it was calling the function
with the name “Install()”. | decided to debug this function step by step because this was the core function who
was responsible to create persistence and to perform other steps.

Handle Packet
Hel

The above all mentioned checks was to initialize the configuration files and to check if the malware running
in virtualized environment or not. If everything is ok then this function was responsible to install the malware.
In the function firstly it was getting the fileInfo which was the same path in which the malware was creating
the “Runtime Broker.exe” and also getting the name of current running process.

P Continue

v X | NormalStartup X

- I

gs-InstallFile));

== fileInfo

returned

After getting these two it was checking if both the running process and the file name in the APPDATA is same
then it tries to kill the running program and exit the code.

After that it was checking if the program is running with admin privileges, then it starts process and scheduled
a task with highest privileges to create persistence.

if (Methods.IsAdmin())

After executing the instruction when | checked the task schedule and see there was a task with the name of
Runtime Broker was created with highest privileges and executed Runtime Broker.exe from APPDATA every
time user login. So, this was creating the persistence using task scheduled if the program executes with the
admin privileges.

MName Status Triggers MNext Run Time Last Run Time Last Run Result

(0 GoogleUpda... Ready Multiple triggers defined 1/8/2024 3:20:09 AM 1/7/2024 3:20:10 AM The operation completed successfully. (0x0)
® GoogleUpda... Ready At 3:20 AM every day - After triggered, repeat every 1 hour for a duration of 1day. 1/8/2024 3:20:00 AM 1/8/2024 220:11 AM The operation completed successfully. (0x0)

. Ready Multiple triggers defined 1/9/2024 1:28:07 AM 1/8/2024 1:28:08 AM The operation completed successfully. (0x0)
. Ready At12:38 AM every day - After triggered, repeat every 1 hour for a duration of 1 day, 1/8/2024 2:38:07 AM 1/8/2024 1:538:08 AM The operation completed successfully, (0x0)
.. Ready At system startup 1/7/20241:46:10AM The operation completed successfully. (0x0)
.. Ready At1:58 AM on 9/25/2023 - After triggered, repeat every 1.00:00:00 indefinitely. 1/9/2024 1:58:40 AM 1/8/2024 1:38:40 AM The operation completed successfully. (0x0)
. Ready At12:00 AM on 5/1/1992 - After triggered, repeat every 1.00:00:00 indefinitely. 1/9/2024 3:01:31 AM 1/8/2024 12:4%:43 AM Security certificate required to access this resource is invalid, (0x3
(@ Runtime Bro... Ready At log on of any user 11/30/1999 12:00:00 AM The task has not yet run. (0x41303)
(B Runtime Broker Properties (Local Computer) X

General Triggers Actions Conditions Settings History (disabled)

< When you create a task, you must specify the action that will cccur when your task starts, >

General Triggers Actions Conditions Setl

Action Details
Mame: Runtime Broker .
Start a program "C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe"
Location: \
Author: DESKTOP-002IHON \shaddy -
Description: -

If the program is executed with normal privileges, then the malware was using the registry key to create
persistence rather them scheduling the task. So, in the execution flow these are two different persistence
techniques depending on the privileges. “HKCU\ Software \Microsoft\Windows\CurrentVersion\Run”

(fileInfo.)y "\"" + fileInfo.

The string value was in reverse form and there was a function which was taking the registry value as an input
and setting it in actual form. These techniques are used by threat actors to bypass defense mechanisms. After
that the malware was getting the bytes from the running file and writing the same bytes using name “Runtime
Broker.exe” in APPDATA folder. Which means it was copying itself in APPDATA.

The string value was in reverse form and there was a function which was taking the registry value as an input
and setting it in actual form. These techniques are used by threat actors to bypass defense mechanisms. After
that the malware was getting the bytes from the running file and writing the same bytes using name “Runtime
Broker.exe” in APPDATA folder. Which means it was copying itself in APPDATA.

(fileInfo.

[4) [= | CAUsers\shaddy\AppDatatRoaming

« “ 4 || s shaddy > AppData > Roaming > O Search Roaming

Name Date modified Trpe
Quick access
Adobe v File folder

@& OneDrive dnSpy 2 22 AM File folder
Hex-Rays y File folder
Microsoft 9 File folder

[This PC
¥ 3D Objects
B Deskiop Process Hacker 2 File folder
5] Documents Sun 23437 A File folder
& Downloads Visual Studio Setup AN File folder

Notepad++ File folder

b Music [&] Runtime Broker.exe y Application

=) Pictures
B Videos
i, Local Disk (C2)

e Network

After that there was some instructuon which was created a batch file in temp folder. This batch script was
executing command timeout 3 > null and starting the copied file “Runtime Broker.exe” also destroying
itself after doing all stuff.

JWriteline("@echo off");
amWriter. i
amWriter.
mWriter.
mlriter.

After executing the instructions, we can clearly see that it created a batch file in temp folder with the name
of “timpB21A.tmp.bat” and writing some commands in this batch file.

Value
em.Diagnostics

= Manage
Home Share View Application Tools

<« B > shaddy > AppData > Local > Temp v o D Search Temp
Name Date modified Type Size
Quick access N

[] tmp3EES.mp 1 41 TMP File
@ OneDrive] tmpSDo.tmp 1 41 TMP File
(] tmpeEAFtmp 1 41 TMP File
& This PC [tmp14B7.amp 1 TMP File
B 3D Objects [tmp428D.tmp 1 TMP File
I Desktop [tmpS63D.tmp 1 TMP File
[Documents (] tmp2293.tmp 12 TMP File
3 Downlosds (] tmpo247.mp 1 TMP File
B Music [] tmpo757.tmp 1 TMP File
[] tmpAACT.tmp 1 TMP File
&1 Pictures
] tmpB21Atmp 1 TMP File
B videos [] tmpB21A.tmp.bat 1 Windows Batch File
- g) tmpB21Atmp.bat - Notepad
=¥ Netws e gt Format View Help
lBecho off
timeout 3 > NUL
START "™ "C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe"

CD C:\Users\shaddy\AppData\Local\Temp\
DEL "tmpB21A.tmp.bat” /f /q

75 items.

After that it was starting the process and executing the batch file. The batch file was the executing the
Runtime Broker which was doing other stuff. After that this program was exiting itself.

.Start(new ProcessStartInfo

e ey

WindowStyle =

FileMame = text,

CreateMoWindow = true,
ErrorDialog = false,
UseShellExecute = false,

This is the process tree when executing with normal privilges.

=1 "gq Explorer EXE (5088)
69 SecurityHealth Systray exe (6044)
ﬁvrntoolsd exe (§76)
@ OneDrive exe (5312)
E’ regedit.exe (6128)
= B Procmon exe (3344)
¥ ProcmonGd exe (6604)
- & ProcessHacker.exe (864)
o] & async.exe (7040)
=] g cmd .exe (5648)
e Conhost exe (6200)
T4 tmeout exe (4484)
® Rurfime Broker exe [J604)

Registry Editor

Process Manitor
Process Monitor
Process Hacker

Windows Explorer
Windows Security...
VMware Tools Caor...
Microsoft OneDrive

Windows Comma...
Console Window ..

timeout - pauses c...

This is the process tfree when executing with admin privileges.
it executes task schedule to create persistence but in normal it executes CMD to create registry key.

antroly - % async.exe (4740)
= gz cmd exe (£LO0U)

24 Conhost exe (6736)
licros % schtasks.exe (6680)
1e'\Mig Sgfomdexe T
1" Mid g2 Conhost exe (6620)
12" Mid % limeout exe (6188)
12" Mig # Runtime Broker.exe (4404)

Runtime Broker.exe

Windows Comma...
Conszale Window ...

Windows Comma...
Consale Window ...
timeout - pauses c...

C\Users\shaddy'... _
C:\Windows"Sys. .. I Microsof
C:\Windows"Syst .. | Microsof

Task Scheduler C... C:\Windows"Sys... | Microzofi
C:\Windows"\Sys... - Microsof
CA\Windows'\Syst .. Microsofi
C:\Windows"Sys. .. - Microsof
Chillsers'\shaddy'...

ProcessWindowStyle.Hidden

CAWindows Expl .. Microsofi
CaWindowsSyst... Microsofi
C:\Program Files.... VMware,
C:iUsers'shaddy®... Microsofl
CiWindows'rege. .. Microsofi
C:AToolshsysintem... Sysintem
ClUsers'\shaddy®... Sysintem
C:\Program Files®... wj32
C:\Users'\shaddy™... -

[. Microsofl
[. Microsofl
Al . Microsofl
CiUsers'shaddy®...

The difference is that with the admin privileges

Now | decided to analyze the copied file maybe there will be something different in this binary of any
loaded modules. So, | opened this binary in dnSpy-x86 and start my analysis on it. But this was the same
exe but this time was totally responsible for creating socket on above mentioned IP address and trying to
download and load new plugins for further activities. In the loop it was continuously try to check the connect
request. InitializeClient() method was doing two main steps one it was checking if the Pastebin variable is
null then it was getting the IP and ports and trying to create socket over TCP.

(TPAddress ipaddress

The next step it was using web client class to download and upload data on created connect server but it
was also checking the certificates and signature for integrity checks.

ValidationCallback

{ ' Blel.

(10000,

Because the server is offline so | can’t get the other loaded modules so | have to stop my analysis here. But
this was a pretty much analysis to understand the working and flow of AsyncRAT which targeting
Colombian government entities.

Loaded .NET Assemblies

CLR v4.0.30319.0, 8, CONCURRENT_GC, ManagedExe,
"C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe”,
¢ AppDomain: Runtime Broker.exe, 19897800, Default, Executable,,
s aB, 20068920, , C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe,
«* Microsoft.VisualBasic, 87782856, ,
C:\Windows\Microsoft.Net\assembly \GAC_MSIL\Microsoft.VisualBasic\v4.0_10.0.0.0__b03f5f7
f11d50a3a\Microsoft.VisualBasic.dll,
+ System, 20081984, Native,
C:\Windows\Microsoft.Net\assembly \GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\
System.dll,
C:\Windows\assembly\Nativelmages_v4.0.30319_32\System\4ce 1bb4828b69fa433f6f01263
6c5d27\System.ni.dll

K/
0’0

Y/
0'0

System.Configuration, 87806360, Native,

C:\Windows\Microsoft.Net\assembly \GAC_MSIL\System.Configuration\v4.0_4.0.0.0__b03f5f7f
11d50a3a\System.Configuration.dll,
C:\Windows\assembly\Nativelmages_v4.0.30319_32\System.Configuration\7f3b1084571309
437a152226b37b6f28\System.Configuration.ni.dll

System.Core, 88645400, Native,

C:\Windows\Microsoft.Net\assembly \GAC_MSIL\System.Core\v4.0_4.0.0.0__b77a5c561934e
089\System.Core.dll,
C:\Windows\assembly\Nativelmages_v4.0.30319_32\System.Core\617d43135fd67b6370a0
9fbe5fb2e5f7\System.Core.ni.dll

System.Xml, 87803728, Native,
C:\Windows\Microsoft.Net\ assembly \GAC_MSIL\System.Xml\v4.0_4.0.0.0__b77a5c561934e0
89\System.Xml.dll,
C:\Windows\assembly\Nativelmages_v4.0.30319_32\System.Xml\be1f06a790a86342db4db
d229ca727a3\System.Xml.ni.dll

AppDomain: SharedDomain, 1939592416, Shared, ,

mscorlib, 20027728, DomainNeutral, Native,

C:\Windows\Microsoft.Net\ assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\m
scorlib.dll,
C:\Windows\assembly\Nativelmages_v4.0.30319_32\mscorlib\féce2e529a5784970d9443aa
ca3aacde\mscorlib.ni.dll

Loaded Modules

X3

8

X3

8

X3

8

X3

A

X3

A

X3

A

X3

8

X3

8

X3

8

X3

A

X3

A

X3

A

X3

8

X3

8

X3

8

X3

S

X3

S

X3

S

X3

8

X3

¢

X3

¢

X3

S

X3

S

X3

¢

X3

¢

Runtime Broker.exe, 72 kB, , Oxbe0000

advapi32.dll, 492 kB, Advanced Windows 32 Base API, 0x75bf0000

apphelp.dll, 640 kB, Application Compatibility Client Library, 0x74430000
berypt.dll, 100 kB, Windows Cryptographic Primitives Library (Wowé4), 0x77ce0000
beryptprimitives.dll, 380 kB, Windows Cryptographic Primitives Library, 0x76d60000
clr.dll, 7.73 MB, Microsoft .NET Runtime Common Language Runtime - WorkStation, 0x7 3270000
clrjit.dll, 504 kB, Microsoft .NET Runtime Just-In-Time Compiler, 0x74140000
combase.dll, 2.5 MB, Microsoft COM for Windows, 0x76dc0000

crypt32.dll, 1 MB, Crypto API32, 0x77660000

crypt32.dil.mui, 40 kB, Crypto API32, 0x2e10000

cryptbase.dll, 40 kB, Base cryptographic APl DLL, 0x74710000

cryptsp.dll, 76 kB, Cryptographic Service Provider API, 0x75170000

gdi32.dll, 144 kB, GDI Client DLL, 0x777c0000

gdi32full.dll, 928 kB, GDI Client DLL, 0x760a0000

imm32.dll, 148 kB, Multi-User Windows IMM32 API Client DLL, 0x77d00000
kernel.appcore.dll, 60 kB, AppModel APl Host, 0x75140000

kernel32.dll, 960 kB, Windows NT BASE API Client DLL, 0x77910000

KernelBase.dll, 2.23 MB, Windows NT BASE API Client DLL, 0x771b0000
KernelBase.dll.mui, 1.25 MB, Windows NT BASE API Client DLL, 0x55f0000

locale.nls, 804 kB, , Oxfc0000

Microsoft.VisualBasic.dll, 624 kB, Visual Basic Runtime Library, 0x5550000
msasn1.dll, 56 kB, ASN.1 Runtime APIs, 0x74700000

mscoree.dll, 328 kB, Microsoft .NET Runtime Execution Engine, 0x743c0000
mscoreei.dll, 544 kB, Microsoft .NET Runtime Execution Engine, 0x74330000
mscorlib.ni.dll, 20.3 MB, Microsoft Common Language Runtime Class Library, 0x71e20000

< msvep_win.dll, 492 kB, Microsoft® C Runtime Library, 0x76ce0000

% msvert.dll, 764 kB, Windows NT CRT DLL, 0x75e40000

** mswsock.dll, 328 kB, Microsoft Windows Sockets 2.0 Service Provider, 0x70a80000
% ntdll.dll, 1.64 MB, NT Layer DLL, 0x77d50000

«* ntdll.dll, 1.97 MB, NT Layer DLL, Ox7fff327f0000

e ole32.dll, 908 kB, Microsoft OLE for Windows, 0x75d50000

% oleaut32.dll, 600 kB, OLEAUT32.DLL, 0x77a40000

% profapi.dll, 112 kB, User Profile Basic API, 0x75150000

psapi.dll, 24 kB, Process Status Helper, 0x75f00000

rpcrt4.dll, 764 kB, Remote Procedure Call Runtime, 0x75¢c70000

rsaenh.dll, 188 kB, Microsoft Enhanced Cryptographic Provider, 0x71b80000
sechost.dll, 472 kB, Host for SCM /SDDL/LSA Lookup APIs, 0x775e0000
SHCore.dll, 540 kB, SHCORE, 0x770c0000

shell32.dll, 5.71 MB, Windows Shell Common DIl, 0x76720000

shlwapi.dll, 276 kB, Shell Light-weight Utility Library, 0x76190000
SortDefault.nls, 3.22 MB, , 0x5070000

sspicli.dll, 132 kB, Security Support Provider Interface, 0x75090000
System.Configuration.ni.dll, 1.02 MB, System.Configuration.dll, 0x7 3ef0O000
% System.Core.ni.dll, 8.09 MB, .NET Framework, 0x68810000

% System.ni.dll, 10.11 MB, .NET Framework, 0x7 1160000

% System.Xml.ni.dll, 7.42 MB, .NET Framework, 0x680a0000

ucrtbase.dll, 1.13 MB, Microsoft® C Runtime Library, 0x777f0000
ucrtbase_clr0400.dll, 716 kB, Microsoft® C Runtime Library, 0x74250000
user32.dll, 1.61 MB, Multi-User Windows USER API Client DLL, 0x773f0000
veruntime 140_clr0400.dll, 84 kB, Microsoft® C Runtime Library, 0x74310000
version.dll, 32 kB, Version Checking and File Installation Libraries, 0x75350000
win32u.dll, 96 kB, Win32u, 0x75d30000

windows.storage.dll, 6.07 MB, Microsoft WinRT Storage API, 0x755d0000
wldp.dll, 148 kB, Windows Lockdown Policy, 0x755a0000

wowb4.dll, 356 kB, Win32 Emulation on NT64, 0x7fff31ca0000
wowb4cpu.dll, 40 kB, AMD64 Wowé4 CPU , 0x77d40000

wowb4win.dll, 524 kB, Wow6b4 Console and Win32 APl Logging, Ox7fff316e0000
ws2_32.dll, 396 kB, Windows Socket 2.0 32-Bit DLL, 0x77ae0000

X3

2

X3

2

X3

2

3

8

3

8

X3

8

X3

8

X3

8

X3

*

R/
0.0

X3

8

X3

*

R/
0.0

X3

*

X3

S

X3

S

X3

S

X3

A

X3

A

X3

A

X3

8

X3

A

Extracted TTP’s

MITRE ATT&CK MAPPING

Technique Kill chain Diamond Comments
phase vertex
T1566.001 - Phishing: Delivery Capability Email with ZIP file
Spearphishing Attachment attached
T1547.001 - Boot or Logon Installation Capability Set registry key if non-
AutoStart Execution: Registry Run privileged user executes

Keys / Startup Folder the payload

T1053.005 - Scheduled Task/Job: Installation ~ Capability Creates new scheduled

Scheduled Task task if privileged user
executes the payload

T1543 - Create or Modify System Installation ~ Capability Create Mutex to check

Process another instance is
running.
T1036.5004 - Masquerading: Installation ~ Capability Set the process critical
Masquerade Task or Service to evade detection
T1036.005 - Masquerading: Match Execution Capability Writes itself as a file
Legitimate Name or Location named Runtime
Broker.exe saved in
%APPDATA%
T1059.003 - Command and Execution Capability Executes batch file
Scripting Interpreter: Windows created previously

Command Shell
T1497.001 - Virtualization/Sandbox Execution Capability Anti-VM and Sandboxes
Evasion: System Checks checks

Recreation and Security controls validation

As an offensive security researcher, my primary responsibility involves the meticulous analysis of real-world
samples to extract Tactics, Techniques, and Procedures (TTPs). Once identified, | map these TTPs onto the
MITRE ATT&CK framework, providing a comprehensive understanding of the adversary's behavior. To
validate the effectiveness of security controls, | employ emulation techniques by recreating the identified
TTPs using the same methods observed in the analyzed samples. This emulation process ensures a realistic
simulation of the adversary's actions, allowing for thorough validation of existing security measures. For this
purpose, | leverage proprietary emulation tools, ensuring precision and adaptability in replicating
sophisticated attack scenarios. My role extends beyond the typical scope of a Security Operations Center
(SOC) Level 3, as | not only analyze but also recreate the same behavior for proactive emulation and then
provide mitigation strategies, including the development of YARA rules, Sigma detection signatures, and
Indicators of Compromise (loC). This comprehensive approach is crucial for enhancing the organization's
resilience against evolving cyber threats.

This is the overall flow of my work:

| | ! |

Technique: Data Technique: Command . Technique: Obfuscated Sandbox Evasion
Encrypted for and Scripting T"m'c:’_:(‘ !n::a:?a:)m Files or Information Time Based
Impact (T1486) = Interpeeter (T1059) ‘ Eamcas (LU0 (T1027) (T1497.003)
Recreated
Emulation
T~
.
| Emulation Tool)
S~ —

Validate

{Slcumy Controls validation
10C’s and YARA

[uoneB

Mitigation
YARA
rule AsyncRAT

{

meta:
description = "AsyncRAT by Blind Eagle"
author = "Usman Sikander"

reference = "https:/ /izoologic.com /phishing /blind-eagle-apt-reemerges-to-target-

colombian-organisations/
hash1 = "c0b9838ff7d2ddecbfe296eae947e5d6"
hash2 = "76af794b85e4a4ba75c5703df1207b7 a6798bf2e"
hash3 = "79068b82bcf0786bbaf1b7ccPéde1bfde1ab6b0d95e7e72ed1b1054443F6c5e3"

strings:

$s1 =
“1DB2A1F9902B35F8F880EF1692CE9947A193D5A698D8F568BDA721658ED4C58B”
fullword ascii

$s2 =
"87639126EA77B358F26532367DBA67C5310EF50A8D9888EDO70CD40E1F605A8F"

fullword ascii

$s3 =
"1DB2A1F9902B35F8F880EF1692CE9947A193D5A698D8F568BDA721658ED4C58B"
fullword ascii

$s4 =
"87639126EA77B358F26532367DBA67C5310EF50A8D9888EDO70CD40E1F605A8F"
fullword wide

$s5 = "clFxcHJwbUJWSEtHY2ROUXpoNHV6cIBMeDVgenpWYmk=" fullword ascii

$s6 =
"17aNgmElc4ngbAn/bhq+YMrQTx4u)1++c0SSk3rYvCFbeHnycL4JrpOThWoAOenn /eMKIGT83
dY3efMDWsGKWA==" fullword wide

$s7 =
"iIMXtaH3RD4azCnEK+bHLyPMPIs2a4cPQifNyYsmtfBqSShS+aUobqlL)XmoGtNAqfb9iYeBC+T49
Ryr3fHwzGOQ==" fullword wide

$s8 =
"RyFgiEdGhARXpcé6DAhvpqlxjU2yLAALheNVzc/+ZTvM9 /YPPPcCarzgxl7jgHKrgmixe711 pingy 2P
ObWnzMZg==" fullword wide

$s9 =
"CfXpd10bbWOrMPUDu4xOQVkVoERQrspS5I5RrSBc3XPré /11 2W dhfLin91Upy8mtbVoZq8NI2Ui
tCoQT8mAILQ==" fullword wide

$510 = "clFxcHIwbUJWSEtHY2ROUXpoNHV6cIBMeDVgenpWYmk=" fullword wide

$0p0 = {BF EB 1E 56 FB CD 97 3B B2 19 02 24 30 A5 78 43 00 3D 56 44 D2 1E 62 B9
D4 F1 80 E7 E6 C3 39 41}

$op1 = {48 61 73 68 00 56 6572 69 66 79 48 61 73 68 00}
$op2 = {41 00 6E 00 74 00 69 00 76 00 69 00 72 00 75}

condition:

(uint16(0) == Ox5a4d and

filesize < 49KB and
(6 of them) and all of ($op*)

) or (all of them)

Conclusion

Traditional signature-based detection methods often struggle to identify this polymorphic malware due to
its rapid ability to change and evade detection.

This analysis underscores the pressing need for behavioral detection mechanisms in modern cybersecurity
strategies. Behavioral detection, powered by machine learning and artificial intelligence, focuses on
identifying behavioral patterns rather than relying solely on known signatures. This approach enables
security systems to adapt and recognize emerging threats like AsyncRAT, even as they evolve to evade
traditional defenses. By continuously monitoring and analyzing system behavior, security solutions equipped
with behavioral detection offer a proactive defense, providing a crucial layer of protection against
emerging threats that traditional methods may miss.

