

2024

Usman Sikander

Offensive security researcher

medium.com/@merasor07

linkedin.com/in/usman-sikander13/

1/8/2024

Unveiling the Intricacies of AsyncRAT: A deployment in
Colombia by the Blind Eagle Cyber Group

mailto:medium.com/@merasor07

Contents
Introduction ... 2

Capabilities .. 2

Technical Details and Chain flow .. 3

File Info:.. 3

AsyncRAT also known as by security vendors: ... 3

Flow of attack and execution: ... 3

Tools and Environment ... 4

Stage (async.exe) .. 5

Basic and Advanced Static Analysis... 5

Basic Information.. 5

Packing ... 5

Detect-It-Easy ... 5

Capa-Output .. 6

Static Analysis .. 7

Basic Dynamic Analysis .. 10

Procmon and Process Hacker ... 10

Advanced Dynamic Analysis ... 12

Run as Admin ... 12

Breakpoints: ... 13

Runtime Broker.exe ... 25

Loaded .NET Assemblies .. 26

Loaded Modules .. 27

Extracted TTP’s ... 28

MITRE ATT&CK MAPPING ... 28

Recreation and Security controls validation ... 29

Mitigation .. 30

YARA .. 30

Conclusion .. 32

Introduction
AsyncRAT is a sophisticated Remote Access Trojan (RAT), intricately developed using the C# programming

language. Its design is centered around an asynchronous operational framework, which grants cyber

attackers extensive remote access and control capabilities over targeted systems. This high level of control

enables the execution of a diverse array of malicious activities, including data exfiltration, system

manipulation, and surveillance.

The utilization of AsyncRAT has been predominantly linked to the cyber group known as Blind Eagle, also

referred to as APT-C-36. This group has been active since April 2018 and is believed to have its origins in

South America. Blind Eagle's operations are characterized by their persistent and targeted nature, focusing

on high-value targets across various critical sectors. Notably, their activities have included systematic cyber-

attacks against key Colombian entities, encompassing government institutions, the financial sector, the oil

industry, and professional manufacturing firms.

The group's methods exhibit advanced tactics, techniques, and procedures (TTPs), leveraging AsyncRAT's

capabilities to infiltrate and compromise systems with precision. Their approach often involves spear-phishing

campaigns, exploiting software vulnerabilities, and using sophisticated social engineering techniques to gain

initial access. Post-compromise, they deploy AsyncRAT to maintain persistence, conduct reconnaissance, and

ultimately fulfill their malicious objectives.

Given the significant threat posed by Blind Eagle and their adept use of AsyncRAT, it's imperative for

organizations within their target spectrum to adopt robust cybersecurity measures. This includes regular

system audits, employee awareness training, and the implementation of advanced threat detection and

response systems."

This ersion includes a more in-depth exploration of AsyncRAT's functionalities, Blind Eagle's operational

tactics, and the broader implications for cybersecurity in the targeted sectors. Blind Eagle primarily uses

NjRAT, AsyncRAT, Remcos RAT, LimeRAT, and QuasarRAT in its campaigns. Blind Eagle’s modus operandi has

remained the same since its emergence, which indicates that it is comfortable conducting spear-phishing

campaigns as they continue to hit the target.

Capabilities
• AsyncRAT creates files inside the user directory

• AsyncRAT creates and modify system processes

• AsyncRAT creates persistence using scheduled task (if-admin)

• AsyncRAT creates persistence using registry (if non-admin)

• AsyncRAT utilizes the defense evasion technique Masquerading

• AsyncRAT utilizes the Virtualization/Sandboxes evasion techniques.

• AsyncRAT utilized the anti-analysis and anti-debugging techniques.

• AsyncRAT encrypts the configuration file using AES-256

• AsyncRAT uses the process manipulation techniques to evade defense

• AsyncRAT uses Command and control (C2) server to exfiltrate and install plugins.

Technical Details and Chain flow

File Info:

AsyncRAT also known as by security vendors:

Flow of attack and execution:

Investigations reveal that the initial phase of Blind Eagle APT's phishing campaign involves the dissemination

of a deceptive email. This email features a subject line in Spanish and contains an attachment: a password-

protected PDF. The PDF is designed to entice recipients with a seemingly urgent request to view an alleged

pending tax document. Upon opening the PDF, users are confronted with a URL that closely mimics the official

site of the Directorate of National Taxes and Customs. However, this link is fraudulent. When clicked, it

redirects the user to an alternative website. This site is responsible for deploying a secondary payload,

discreetly retrieved from a public Discord server. This secondary payload serves as a precursor to the final

stage of the cyber-attack. It facilitates the installation of AsyncRAT, completing the infection process. The

sophisticated nature of this method underscores the necessity for vigilance and robust cybersecurity measures,

particularly in recognizing and responding to phishing attempts. In this report, I got a sample which is

downloaded by clicking on phishing link and I try to perform technical analysis of the sample and extracted

the TTP’s utilized by blind eagle threat group.

Tools and Environment
• Flare-VM (Windows 10)

• REMnux (Simulator)

• dnSpy

• Cutter

• Detect-it-easy

• RegShot

• ExeInfoPE

• De4dot

• Capa

• Procmon

• Process Hacker

• TcpView

• PE Bear

• PE Studio

• Wireshark

Stage (async.exe)

Basic and Advanced Static Analysis

Basic Information

async.exe:

SHA256: 79068b82bcf0786b6af1b7cc96de1bf4e1a66b0d95e7e72ed1b1054443f6c5e3

MD5: c0b9838ff7d2ddecbfe296eae947e5d6

CPU: 32-bits

Language: .Net programming language (c#)

Compiler-stamp: Sun May 10 05:24:51 2020 UTC

Interesting Strings:

• " /c schtasks /create /f /sc onlogon /rl highest /tn "

• “Select * from AntivirusProduct”, “Select * from Win32_ComputerSystem”

• “CfXpd10bbWOrMPUDu4xOQVkVoERQrspS5I5RrSBc3XPr6/l12WdhfLjn9IUpy8mtbVoZq8Nl2Ui

tCoQT8mAlLQ==”

• “5xU2z25Rov7slOLBtk+8+vn4pnps2wv04q8onR2M1PeHt+fevvgEpJ9uqUq8M6BdaI5lNbuF3jAH

GdE7FovjtQ==”

• “" /tr '""' & exit\nuR\noisreVtnerruC\swodniW\tfosorciM\erawtfoS”

• “\nuR\noisreVtnerruC\swodniW\tfosorciM\erawtfoS”

Inspection: LoadModule, MemoryStream, ToBase64String, FileAccess, RSACryptoServiceProvider,

RtlSetProcessIsCritical

Packing

Detect-It-Easy

After opening the sample with detect-it-easy tool it shows me that the binary is not packed but there was at

some level I assumed it may be little bit obfuscated and there will be some random strings and junk data to

make it difficult for analyst.

Capa-Output

When I performed CAPA analysis on first stage of malware (WinDir.exe), it indicates that the binary is not

packed. The detail verbose analysis also tells the binary is obfuscated and it trigger most of the rules which

indicated that the binary is using these tactics and techniques according to MITRE ATT&CK framework. The

CAPA analysis also indicates that the binary is performing the system discovery, file discovery and defense

evasion like obfuscation and masquerading files. Capa output also indicating that the sample has Anti-VM

and Anti-Behavioral analysis techniques to make malware analysis harder for analyst. Capa output trigger

multiple TTPs that is utilized by the malware, at this point I am not sure about these TTPs. After perform

behavioral and dynamic analysis I can say about the actual behavior of the malware.

Static Analysis

Before performing dynamic analysis and first detonation of malware, I opened the malware in dnSpy-x86

to perform some advanced static analysis. Because the binary is .NET and it was not packed by any custom

or commercial packer so I got the clear code by using the Decompiler and debugger. Before debugging the

code line by line and perform dynamic analysis I started looking into functions and try to understand the

working of the malware. Before wasting anytime, I just go to the entry point which was main function and at

the very first line there was “for” loop which is running 4 times from 0-3 and each time sleep for 1 sec. In

short it was sleeping 4000 milliseconds before executing anything. This technique could be leverage by

threat actors to bypass defense mechanisms.

After the loop there was a “if” condition which was checking the function return value. If the function

InitializeSettings() is returning true then it perform rest of the working, if the Boolean value is false it exiting

the program here.

When I opened the function to check what actually this function is doing and I found AsyncRAT configurations.

These configurations contain ports, hosts, versions, installation, MTX, certificates and also other stuff which

were encrypted with AES-256. At this stage, I don’t know the values of these configurations.

Next step it was created the MUTEX and at this stage I don’t know what value it was using because the

MUTEX value was encrypted with AES-256.

If the MUTEX is created successfully then it executes next instructions otherwise it exited the program. The

next instructions were performing anti-analysis, anti-debugging and anti-sandboxing techniques. These

techniques I will show you in my advance analysis and how to bypass these checks to continues the analysis.

After above mentioned checks the malware was installing itself and doing the stuff. If the above all checks

return true then it was performing installation and some persistence techniques.

After installing and performing some persistence, it was checking if the malware is executing with admin

privileges and the value of a public static variable (BDOS) is true then I was making itself as a critical

process by utilizing the native API calls from ntdll.dll. I already analyzed a lot of malwares which used this

technique to evade AV/EDR because only limited windows legitimate process is running as critical processes

and by terminating those processes you will get BSOD (Blue screen of death). Maybe the variable is

indicating the same name but threat actors misspelled it.

In the last step of my static analysis there was loop designed to maintain a network connection in a client-

server model. Here's a breakdown of its functionality:

❖ for (; ;) - This is an infinite loop. It will continue to run until the program is manually stopped or an

external condition causes it to exit.

❖ try - This block is used to handle any exceptions that might occur during the execution of the code

inside it. This is a common practice to ensure the program doesn't crash unexpectedly.

❖ if (!ClientSocket.IsConnected) - This condition checks if the client socket is not connected.

❖ ClientSocket.Reconnect(); - If the client socket is not connected, this line attempts to reconnect the

client to the server.

❖ ClientSocket.InitializeClient(); - This method likely initializes the client socket, setting up necessary

parameters or configurations for the connection.

❖ Thread.Sleep(5000); - This line pauses the execution of the current thread for 5000 milliseconds (or

5 seconds). It's likely used here to prevent the loop from overwhelming the CPU or network with

continuous connection attempts.

This code snippet is a more detailed implementation of a method called InitializeClient() in a client-server

networking context. The method is structured to establish a TCP connection with a server, potentially involving

secure communication over SSL/TLS. Here's a breakdown:

❖ Socket Initialization: A TCP socket is created with specified buffer sizes for sending and receiving

data. The SocketType.Stream and ProtocolType.Tcp indicate it's a TCP socket, suitable for continuous

streams of data.

❖ Server Connection Logic: The method includes logic for choosing server addresses and ports. If

Settings.Pastebin is set to "null", it randomly selects a server address and port from a list defined in

Settings.Hosts and Settings.Ports. If Settings.Pastebin is not null, it fetches a server address and port

from a Pastebin URL.

❖ Domain Name Validation: The code checks if the chosen server address is a valid domain name. If

it is, it resolves the domain name to an IP address and attempts to connect to it. If not, it directly

attempts to connect to the provided address.

❖ Catch Blocks: There are several empty catch blocks which are not handling exceptions. This could

lead to silent failures where errors are not logged or addressed.

❖ SSL/TLS Setup: If the connection is successful, it sets up an SSL/TLS stream for secure communication,

authenticating the server's certificate. The specifics of the SSL/TLS protocol version and other

parameters are configured here.

❖ Data Transmission Setup: The client prepares to send and receive data. This includes setting up data

buffers, initiating a keep-alive packet mechanism, and starting a timer for sending pings.

❖ Read Server Data: The client begins asynchronously reading data from the server, using the

BeginRead method on the SSL stream.

❖ Connection Status: The client's connection status (IsConnected) is updated based on whether the

connection is successfully established or not.

Basic Dynamic Analysis

Procmon and Process Hacker

As an offensive security researcher, I always prefer Procmon, process hacker, TcpView and Wireshark in my

first detonation of malware sample which I analyze. When I executed the sample and captured all traffic

using Wireshark, captured the whole host-based activities using Procmon and network connections using

TcpView, I noticed some interested activities on Procmon. I applied filter on Procmon to check either AsyncRAT

write any file or downloading any file on disk at runtime. I noticed that the sample wrote two file one with

the name of “Runtime Broker” in %APPDATA% and secondly it created batch file with the name of

“tmp8BAF.tmp.bat” in temp folder. When I checked registry changes, I noticed that the malware was setting

registry value with the same name of EXE which it created in %APPDATA%. This registry key is used to create

persistence on system, so at this point I was sure that the malware is creating persistence by adding the

“Runtime Broker.exe” in the registry path

“HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Runtime Broker”

I noticed some connection request over TCP, at this stage I can say the malware maybe was trying to connect

with this IP address “217.195.197.70” using different port like 6606, 8808 and 7707. The malware was

trying to create sockets.

To make sure network activity and which process is responsible for making connection on above mentioned

IP address, I checked all processes network activities by using one of my favorite tools TcpView. I noticed

that the process with the same name “Runtime Broker.exe” was trying to connect with the same IP address

over TCP on same ports that I have mentioned above. This was continuously sending the sync packets to

initiate the TCP connection. At that point, I was sure that this process was responsible for the rest of the

malware activities and connecting with the command-and-control server.

After my first detonation of sample, I have some idea about the malware that it was creating two file one

is batch file and the other was .exe file. Also, it was adding some registry value for persistence and trying

to create TCP connection with command-and-control server on different Ports. When I checked this IP on

virus total most of the vendors was indicating it as a malicious IP address and virus total was showing me

the IP is from Turkey according to the ASN.

When I checked the process tree, I noticed that the process was executing cmd.exe, timeout.exe and the

same file Runtime Broker.exe in its child hierarchy. At that point I don’t know what is full working and code

structure of Runtime Broker.exe and who is responsible for running other process. It will be more cleared to

me after performing debugging and advanced dynamic analysis of the malware.

Advanced Dynamic Analysis

Run as Admin

I started advanced dynamic analysis of sample using dnSpy-x86. Dnspy is one of the best debuggers and

Decompiler for .NET binaries. AsyncRAT.exe is .Net binary so I open it using dnSpy, In my static analysis, I

noticed that the program was looking admin privileges also so I decided to breakdown my analysis into two

parts first one to run as a admin and check all the behavior and the second run as normal privileges and

check what is the different and how the malware is behaving in both conditions. The flow of the entry was

same that I mentioned in my static analysis. First creating some sleep, then initializing its configuration,

creating mutex, checking virtualized environment, installation, setting the process as critical and at the end

continuously trying to connect with the server. So let start debugging set breakpoint on each step and try to

decrypt the configuration and see the behavior of malware.

Breakpoints:

I start analysis step by step and put breakpoints. First, I wanted to know about the configurations file that it

was initializing and checking if everything is good then go to next step. So, I put breakpoint on if condition

where it was checking either the function is returning true or false.

Following the execution flow I step-into this function and there were configurations at this point all were

encrypted with AES-256. So I put breakpoints on decryption function which was returning decrypted values

of all configuration and execute the flow and extract the decrypted value, let’s check one by one what was

the actual configuration.

After successfully starting the program, I decrypted value one by one so I can clearly understand the

working of the malware. When I decrypted the Ports on which the malware was trying to communicate with

the C2 server over TCP, these ports were same that we analyzed in our first detonation.

When I follow the execution, I found that it was trying to connect with the same IP address that we found in

TcpView. It means the malware hardcoded the c2 server IP and ports but in encrypted form to which it was

trying to create socket.

After decrypting the next value which was some variable with name version, it was decrypting the version

value. Maybe this value is using while creating connection with the C2 server.

When I decrypted the next variable with the name install which was using into function of malware

installation. This was retuning Boolean value “true” after decrypting. When malware initialize its

configurations by default the declared value of this variable is true.

Now I decrypted the next value of configuration which was using to created MUTEX. Malware uses mutex

for different purposes for example synchronization of instances, or if the same instance is already running

or run the close the program etc. The sample was creating the mutex with the value of

"AsyncMutex_6SI8OkPnk"

After that there was a variable with the name of Pastebin which was returning the null after decrypting

maybe this was something that was filled when the connection established.

The next value was for anti-vm and anti-sandbox. After decrypting the value, it was returning the Boolean

“false”. I was surprised at this point maybe this value should be true by default to check virtualization or

sandboxes. I have to make this value false anyway to perform my analysis, this step is called patching the

malware.

After that there was a BDOS variable after decrypting it was returning the value false by default. This is

something which was using to make a process critical. Maybe all these values will be true in other .exe which

this malware was creating with the name of “Runtime Broker.exe”.

At the end, there was variables with the name of Serversignature and ServerCertificate. After decrypting

value, I got the certificate which was using to connect with the c2 server over TLS/SSL. All data was sending

and receiving over encrypted form. I am attaching both screenshots so you guys can see the certificate and

signatures values which was using during the connection creation.

At the end of this function, there was a verifyHash() function which was checking the integrity of certificates

and signatures of server before returning true or false. If the certificate value is same then it returns true.

After completing the initialization function, I forward to the next instruction there was if statement which was

checking either the mutex is successfully created or not. If the mutex is not created it stops the execution of

program. So I set the breakpoint of CreateMutex() function and see the returning value to continue the flow

of program execution.

After successfully creating the mutex with value that I mentioned in my above analysis the program now

checking and execution RunAntiAnalysis() which was checking different checks either the malware is running

in virtual or sandbox environment then it will exit. Let check the each anti-vm and anti-sandbox techniques

deployed by this malware sample.

In this function there were 5 functions executing. All these functions are checking different conditions and

returning the value of true or false based on the environment in which the malware was running. Let’s discuss

the conditions one by one.

C# method named IsSmallDisk that checks if the system drive has a total size less than or equal to

61,000,000,000 bytes (approximately 61 GB).

Defining Size Limit: long num = 61000000000L; sets the size limit (61 GB) for what is considered a 'small

disk'.

Getting System Drive Size: Path.GetPathRoot(Environment.SystemDirectory) gets the root path of the

system directory (usually the drive where the operating system is installed).

new DriveInfo(...).TotalSize creates a DriveInfo object for the system drive and retrieves its total size.

Size Comparison: if (new DriveInfo (Path.GetPathRoot(Environment.SystemDirectory)).TotalSize <= num)

checks if the total size of the system drive is less than or equal to 61 GB. If the condition is true, return true;

is executed, indicating that the disk is considered 'small'.

IsXP method that checks if the operating system of the computer is Windows XP

Checking Operating System: new ComputerInfo().OSFullName.ToLower() creates an instance of

ComputerInfo and retrieves the full name of the operating system, converting it to lowercase.

.Contains("xp") checks if the OS name contains the substring "xp".

Returning True for Windows XP: If the condition if (new

ComputerInfo().OSFullName.ToLower().Contains("xp")) is true, which means the operating system name

includes "xp", the method returns true. This indicates that the operating system is Windows XP.

After that DetectManufacturer method intended to determine if the computer is a virtual machine based on

its manufacturer and model.

Using Statements for Resource Management: ManagementObjectSearcher is instantiated with the query

"Select * from Win32_ComputerSystem". This object is used to query WMI (Windows Management

Instrumentation) for information about the computer system.

ManagementObjectCollection is obtained from the ManagementObjectSearcher object, containing the

results of the WMI query.

Iterating Over Management Objects: The method iterates over each ManagementBaseObject in the

ManagementObjectCollection. It retrieves and converts the Manufacturer property to lowercase and stores

it in the text variable. The Model property is also retrieved for further checks.

Checking for Virtual Machine Manufacturers: The method checks if the manufacturer is "Microsoft

Corporation" and the model contains "VIRTUAL" (indicating a Microsoft virtual machine, like Hyper-V). It also

checks if the manufacturer's name contains "vmware" or if the model is "VirtualBox". If any of these conditions

are met, the method returns true, indicating the system is likely a virtual machine.

The DetectDebugger method designed to check if the current process is being debugged.

NativeMethods.CheckRemoteDebuggerPresent(Process.GetCurrentProcess().Handle, ref flag); is called. This

method is presumably a part of a custom class NativeMethods and is expected to perform a check to see if

the current process (Process.GetCurrentProcess().Handle) is being debugged. The result of this check is stored

in flag. After the call, flag2 is set to the value of flag. If the CheckRemoteDebuggerPresent method

determines that the process is being debugged, flag will be true, and thus flag2 will also be set to true.

And in the final the DetectSandboxie method designed to detect whether the application is running within

Sandboxie, a popular sandboxing software. NativeMethods.GetModuleHandle("SbieDll.dll").ToInt32() is

called to get a handle to the module "SbieDll.dll", which is a known component of Sandboxie. .ToInt32() !=

0 checks whether the handle is non-zero. A non-zero value indicates that the module is present in the process's

address space, suggesting that the application is running within Sandboxie. If the module is found, flag is set

to true. Otherwise, it is set to false.

After that there was a condition that was checking if the install variable is true then it was calling the function

with the name “Install()”. I decided to debug this function step by step because this was the core function who

was responsible to create persistence and to perform other steps.

The above all mentioned checks was to initialize the configuration files and to check if the malware running

in virtualized environment or not. If everything is ok then this function was responsible to install the malware.

In the function firstly it was getting the fileInfo which was the same path in which the malware was creating

the “Runtime Broker.exe” and also getting the name of current running process.

After getting these two it was checking if both the running process and the file name in the APPDATA is same

then it tries to kill the running program and exit the code.

After that it was checking if the program is running with admin privileges, then it starts process and scheduled

a task with highest privileges to create persistence.

After executing the instruction when I checked the task schedule and see there was a task with the name of

Runtime Broker was created with highest privileges and executed Runtime Broker.exe from APPDATA every

time user login. So, this was creating the persistence using task scheduled if the program executes with the

admin privileges.

If the program is executed with normal privileges, then the malware was using the registry key to create

persistence rather them scheduling the task. So, in the execution flow these are two different persistence

techniques depending on the privileges. “HKCU\Software\Microsoft\Windows\CurrentVersion\Run”

The string value was in reverse form and there was a function which was taking the registry value as an input

and setting it in actual form. These techniques are used by threat actors to bypass defense mechanisms. After

that the malware was getting the bytes from the running file and writing the same bytes using name “Runtime

Broker.exe” in APPDATA folder. Which means it was copying itself in APPDATA.

The string value was in reverse form and there was a function which was taking the registry value as an input

and setting it in actual form. These techniques are used by threat actors to bypass defense mechanisms. After

that the malware was getting the bytes from the running file and writing the same bytes using name “Runtime

Broker.exe” in APPDATA folder. Which means it was copying itself in APPDATA.

After that there was some instructuon which was created a batch file in temp folder. This batch script was

executing command timeout 3 > null and starting the copied file “Runtime Broker.exe” also destroying

itself after doing all stuff.

After executing the instructions, we can clearly see that it created a batch file in temp folder with the name

of “tmpB21A.tmp.bat” and writing some commands in this batch file.

After that it was starting the process and executing the batch file. The batch file was the executing the

Runtime Broker which was doing other stuff. After that this program was exiting itself.

This is the process tree when executing with normal privilges.

This is the process tree when executing with admin privileges. The difference is that with the admin privileges

it executes task schedule to create persistence but in normal it executes CMD to create registry key.

Runtime Broker.exe

Now I decided to analyze the copied file maybe there will be something different in this binary of any

loaded modules. So, I opened this binary in dnSpy-x86 and start my analysis on it. But this was the same

exe but this time was totally responsible for creating socket on above mentioned IP address and trying to

download and load new plugins for further activities. In the loop it was continuously try to check the connect

request. InitializeClient() method was doing two main steps one it was checking if the Pastebin variable is

null then it was getting the IP and ports and trying to create socket over TCP.

The next step it was using web client class to download and upload data on created connect server but it

was also checking the certificates and signature for integrity checks.

Because the server is offline so I can’t get the other loaded modules so I have to stop my analysis here. But

this was a pretty much analysis to understand the working and flow of AsyncRAT which targeting

Colombian government entities.

Loaded .NET Assemblies
❖ CLR v4.0.30319.0, 8, CONCURRENT_GC, ManagedExe,

"C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe”,

❖ AppDomain: Runtime Broker.exe, 19897800, Default, Executable,,

❖ aB, 20068920, , C:\Users\shaddy\AppData\Roaming\Runtime Broker.exe,

❖ Microsoft.VisualBasic, 87782856, ,

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Microsoft.VisualBasic\v4.0_10.0.0.0__b03f5f7

f11d50a3a\Microsoft.VisualBasic.dll,

❖ System, 20081984, Native,

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\

System.dll,

C:\Windows\assembly\NativeImages_v4.0.30319_32\System\4ce1bb4828b69fa433f6f01263

6c5d27\System.ni.dll

❖ System.Configuration, 87806360, Native,

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Configuration\v4.0_4.0.0.0__b03f5f7f

11d50a3a\System.Configuration.dll,

C:\Windows\assembly\NativeImages_v4.0.30319_32\System.Configuration\7f3b1084571309

437a152226b37b6f28\System.Configuration.ni.dll

❖ System.Core, 88645400, Native,

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Core\v4.0_4.0.0.0__b77a5c561934e

089\System.Core.dll,

C:\Windows\assembly\NativeImages_v4.0.30319_32\System.Core\617d43135fd67b6370a0

9fbe5fb2e5f7\System.Core.ni.dll

❖ System.Xml, 87803728, Native,

C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Xml\v4.0_4.0.0.0__b77a5c561934e0

89\System.Xml.dll,

C:\Windows\assembly\NativeImages_v4.0.30319_32\System.Xml\be1f06a790a86342db4db

d229ca727a3\System.Xml.ni.dll

❖ AppDomain: SharedDomain, 1939592416, Shared, ,

❖ mscorlib, 20027728, DomainNeutral, Native,

C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\m

scorlib.dll,

C:\Windows\assembly\NativeImages_v4.0.30319_32\mscorlib\f6ce2e529a5784970d9443aa

ca3aac4e\mscorlib.ni.dll

Loaded Modules
❖ Runtime Broker.exe, 72 kB, , 0xbe0000

❖ advapi32.dll, 492 kB, Advanced Windows 32 Base API, 0x75bf0000

❖ apphelp.dll, 640 kB, Application Compatibility Client Library, 0x74430000

❖ bcrypt.dll, 100 kB, Windows Cryptographic Primitives Library (Wow64), 0x77ce0000

❖ bcryptprimitives.dll, 380 kB, Windows Cryptographic Primitives Library, 0x76d60000

❖ clr.dll, 7.73 MB, Microsoft .NET Runtime Common Language Runtime - WorkStation, 0x73270000

❖ clrjit.dll, 504 kB, Microsoft .NET Runtime Just-In-Time Compiler, 0x74140000

❖ combase.dll, 2.5 MB, Microsoft COM for Windows, 0x76dc0000

❖ crypt32.dll, 1 MB, Crypto API32, 0x77660000

❖ crypt32.dll.mui, 40 kB, Crypto API32, 0x2e10000

❖ cryptbase.dll, 40 kB, Base cryptographic API DLL, 0x74710000

❖ cryptsp.dll, 76 kB, Cryptographic Service Provider API, 0x75170000

❖ gdi32.dll, 144 kB, GDI Client DLL, 0x777c0000

❖ gdi32full.dll, 928 kB, GDI Client DLL, 0x760a0000

❖ imm32.dll, 148 kB, Multi-User Windows IMM32 API Client DLL, 0x77d00000

❖ kernel.appcore.dll, 60 kB, AppModel API Host, 0x75140000

❖ kernel32.dll, 960 kB, Windows NT BASE API Client DLL, 0x77910000

❖ KernelBase.dll, 2.23 MB, Windows NT BASE API Client DLL, 0x771b0000

❖ KernelBase.dll.mui, 1.25 MB, Windows NT BASE API Client DLL, 0x55f0000

❖ locale.nls, 804 kB, , 0xfc0000

❖ Microsoft.VisualBasic.dll, 624 kB, Visual Basic Runtime Library, 0x5550000

❖ msasn1.dll, 56 kB, ASN.1 Runtime APIs, 0x74700000

❖ mscoree.dll, 328 kB, Microsoft .NET Runtime Execution Engine, 0x743c0000

❖ mscoreei.dll, 544 kB, Microsoft .NET Runtime Execution Engine, 0x74330000

❖ mscorlib.ni.dll, 20.3 MB, Microsoft Common Language Runtime Class Library, 0x71e20000

❖ msvcp_win.dll, 492 kB, Microsoft® C Runtime Library, 0x76ce0000

❖ msvcrt.dll, 764 kB, Windows NT CRT DLL, 0x75e40000

❖ mswsock.dll, 328 kB, Microsoft Windows Sockets 2.0 Service Provider, 0x70a80000

❖ ntdll.dll, 1.64 MB, NT Layer DLL, 0x77d50000

❖ ntdll.dll, 1.97 MB, NT Layer DLL, 0x7fff327f0000

❖ ole32.dll, 908 kB, Microsoft OLE for Windows, 0x75d50000

❖ oleaut32.dll, 600 kB, OLEAUT32.DLL, 0x77a40000

❖ profapi.dll, 112 kB, User Profile Basic API, 0x75150000

❖ psapi.dll, 24 kB, Process Status Helper, 0x75f00000

❖ rpcrt4.dll, 764 kB, Remote Procedure Call Runtime, 0x75c70000

❖ rsaenh.dll, 188 kB, Microsoft Enhanced Cryptographic Provider, 0x71b80000

❖ sechost.dll, 472 kB, Host for SCM/SDDL/LSA Lookup APIs, 0x775e0000

❖ SHCore.dll, 540 kB, SHCORE, 0x770c0000

❖ shell32.dll, 5.71 MB, Windows Shell Common Dll, 0x76720000

❖ shlwapi.dll, 276 kB, Shell Light-weight Utility Library, 0x76190000

❖ SortDefault.nls, 3.22 MB, , 0x5070000

❖ sspicli.dll, 132 kB, Security Support Provider Interface, 0x75090000

❖ System.Configuration.ni.dll, 1.02 MB, System.Configuration.dll, 0x73ef0000

❖ System.Core.ni.dll, 8.09 MB, .NET Framework, 0x68810000

❖ System.ni.dll, 10.11 MB, .NET Framework, 0x71160000

❖ System.Xml.ni.dll, 7.42 MB, .NET Framework, 0x680a0000

❖ ucrtbase.dll, 1.13 MB, Microsoft® C Runtime Library, 0x777f0000

❖ ucrtbase_clr0400.dll, 716 kB, Microsoft® C Runtime Library, 0x74250000

❖ user32.dll, 1.61 MB, Multi-User Windows USER API Client DLL, 0x773f0000

❖ vcruntime140_clr0400.dll, 84 kB, Microsoft® C Runtime Library, 0x74310000

❖ version.dll, 32 kB, Version Checking and File Installation Libraries, 0x75350000

❖ win32u.dll, 96 kB, Win32u, 0x75d30000

❖ windows.storage.dll, 6.07 MB, Microsoft WinRT Storage API, 0x755d0000

❖ wldp.dll, 148 kB, Windows Lockdown Policy, 0x755a0000

❖ wow64.dll, 356 kB, Win32 Emulation on NT64, 0x7fff31ca0000

❖ wow64cpu.dll, 40 kB, AMD64 Wow64 CPU , 0x77d40000

❖ wow64win.dll, 524 kB, Wow64 Console and Win32 API Logging, 0x7fff316e0000

❖ ws2_32.dll, 396 kB, Windows Socket 2.0 32-Bit DLL, 0x77ae0000

Extracted TTP’s

MITRE ATT&CK MAPPING

Technique Kill chain

phase

Diamond

vertex

Comments

T1566.001 - Phishing:

Spearphishing Attachment

Delivery Capability Email with ZIP file

attached

T1547.001 - Boot or Logon

AutoStart Execution: Registry Run

Keys / Startup Folder

Installation Capability Set registry key if non-

privileged user executes

the payload

T1053.005 - Scheduled Task/Job:

Scheduled Task

Installation Capability Creates new scheduled

task if privileged user

executes the payload

T1543 - Create or Modify System

Process

Installation Capability Create Mutex to check

another instance is

running.

T1036.S004 - Masquerading:

Masquerade Task or Service

Installation Capability Set the process critical

to evade detection

T1036.005 - Masquerading: Match

Legitimate Name or Location

Execution Capability Writes itself as a file

named Runtime

Broker.exe saved in

%APPDATA%

T1059.003 - Command and

Scripting Interpreter: Windows

Command Shell

Execution Capability Executes batch file

created previously

T1497.001 - Virtualization/Sandbox

Evasion: System Checks

Execution Capability Anti-VM and Sandboxes

checks

Recreation and Security controls validation
As an offensive security researcher, my primary responsibility involves the meticulous analysis of real-world

samples to extract Tactics, Techniques, and Procedures (TTPs). Once identified, I map these TTPs onto the

MITRE ATT&CK framework, providing a comprehensive understanding of the adversary's behavior. To

validate the effectiveness of security controls, I employ emulation techniques by recreating the identified

TTPs using the same methods observed in the analyzed samples. This emulation process ensures a realistic

simulation of the adversary's actions, allowing for thorough validation of existing security measures. For this

purpose, I leverage proprietary emulation tools, ensuring precision and adaptability in replicating

sophisticated attack scenarios. My role extends beyond the typical scope of a Security Operations Center

(SOC) Level 3, as I not only analyze but also recreate the same behavior for proactive emulation and then

provide mitigation strategies, including the development of YARA rules, Sigma detection signatures, and

Indicators of Compromise (IoC). This comprehensive approach is crucial for enhancing the organization's

resilience against evolving cyber threats.

This is the overall flow of my work:

Mitigation

YARA

rule AsyncRAT

{

 meta:

 description = "AsyncRAT by Blind Eagle"

 author = "Usman Sikander"

 reference = "https://izoologic.com/phishing/blind-eagle-apt-reemerges-to-target-

colombian-organisations/

 hash1 = "c0b9838ff7d2ddecbfe296eae947e5d6"

 hash2 = "76af794b85e4a4ba75c5703df1207b7a6798bf2e"

 hash3 = "79068b82bcf0786b6af1b7cc96de1bf4e1a66b0d95e7e72ed1b1054443f6c5e3"

 strings:

 $s1 =

“1DB2A1F9902B35F8F880EF1692CE9947A193D5A698D8F568BDA721658ED4C58B”

fullword ascii

 $s2 =

"87639126EA77B358F26532367DBA67C5310EF50A8D9888ED070CD40E1F605A8F"

fullword ascii

 $s3 =

"1DB2A1F9902B35F8F880EF1692CE9947A193D5A698D8F568BDA721658ED4C58B"

fullword ascii

 $s4 =

"87639126EA77B358F26532367DBA67C5310EF50A8D9888ED070CD40E1F605A8F"

fullword wide

 $s5 = "clFxcHJwbUJWSEtHY2ROUXpoNHV6clBMeDVqenpWYmk=" fullword ascii

 $s6 =

"17aNgmElc4ng6An/6hq+YMrQTx4uJ1++c0SSk3rYvCFbeHnycL4Jrp01hWoAOenn/eMKIGT83

dY3efMDWsGKWA==" fullword wide

 $s7 =

"iMXtaH3RD4azCnEK+bHLyPMPIs2a4cPQifNyYsmtfBqSShS+aUobqLJXmoGtNAqfb9jYeBC+T49

Ryr3fHwzGOQ==" fullword wide

 $s8 =

"RyFgiEdGhARXpc6DAhvpqJxjU2yLAALheNVzc/+ZTvM9/YPPPcCarzgxl7jgHKrgmjxe7l1pingy2P

ObWnzMZg==" fullword wide

 $s9 =

"CfXpd10bbWOrMPUDu4xOQVkVoERQrspS5I5RrSBc3XPr6/l12WdhfLjn9IUpy8mtbVoZq8Nl2Ui

tCoQT8mAlLQ==" fullword wide

 $s10 = "clFxcHJwbUJWSEtHY2ROUXpoNHV6clBMeDVqenpWYmk=" fullword wide

 $op0 = {BF EB 1E 56 FB CD 97 3B B2 19 02 24 30 A5 78 43 00 3D 56 44 D2 1E 62 B9

D4 F1 80 E7 E6 C3 39 41}

 $op1 = {48 61 73 68 00 56 65 72 69 66 79 48 61 73 68 00}

 $op2 = {41 00 6E 00 74 00 69 00 76 00 69 00 72 00 75}

 condition:

 (uint16(0) == 0x5a4d and

 filesize < 49KB and

 (6 of them) and all of ($op*)

) or (all of them)

}

Conclusion
Traditional signature-based detection methods often struggle to identify this polymorphic malware due to

its rapid ability to change and evade detection.

This analysis underscores the pressing need for behavioral detection mechanisms in modern cybersecurity

strategies. Behavioral detection, powered by machine learning and artificial intelligence, focuses on

identifying behavioral patterns rather than relying solely on known signatures. This approach enables

security systems to adapt and recognize emerging threats like AsyncRAT, even as they evolve to evade

traditional defenses. By continuously monitoring and analyzing system behavior, security solutions equipped

with behavioral detection offer a proactive defense, providing a crucial layer of protection against

emerging threats that traditional methods may miss.

