

 Dark Crystel RAT (DCrat) Detailed Analysis Report

 Multi-Stage

Author: Usman Sikander

Designation: Offensive security engineer and researcher

Medium: https://medium.com/@merasor07

Contents
Introduction .. 3

Capabilities .. 3

Tools and Environment ... 3

Stage 1 (dcrat.exe)... 4

Basic and Advanced Static Analysis ... 4

Initial access .. 4

Basic Information .. 4

Detect-It-Easy .. 5

Capa-Output .. 5

Cutter-Output (Disassembler and Decompiler) .. 6

Basic Dynamic Analysis ... 6

Procmon and Process Hacker .. 6

Advanced Dynamic Analysis .. 7

Breakpoint: .. 9

Stage 2 (koi.exe) .. 10

Basic Static Analysis .. 10

Detect-It-Easy .. 10

Advanced Dynamic Analysis .. 11

Getting-New-Module .. 12

Stage 3 (output.exe) .. 12

Basic Static Analysis .. 12

Detect-It-Easy .. 13

Advanced Dynamic Analysis .. 13

Interesting Strings ... 13

Flow of Encoding ... 14

Conclusion ... 18

Introduction
DCRat, also known as Dark Crystal RAT, is a malicious program that allows cybercriminals to gain control of

a compromised computer remotely. It's used to steal various types of sensitive information, like clipboard

contents and personal login details from applications. What makes it dangerous is its ability to stay hidden

from regular security software.

DCRat has been around since 2018, and its creators keep updating and improving it to make it more

powerful. It has different parts that do specific things, such as stealing cryptocurrency and secretly

recording keystrokes.

The people behind DCRat have even released a special tool called "DCRat Studio" that helps them create

new features for the malware. This constant evolution and the malware's ability to evade detection make

it a significant threat to computer users and organizations. Staying cautious and using advanced security

measures is crucial to protect against DCRat and similar threats.

In 2018, Dark Crystal RAT primarily used Java, but it shifted to C# in 2019. Today, most of its modules are

written in C#. Interestingly, the administrative server for this malware is built using JPHP, a version of PHP

that runs on the Java Virtual Machine.

To thwart attempts by malware analysts to reverse engineer its code, different versions of DCrat employ

evasion and obfuscation techniques. For example, they can obfuscate DCrat's payload using a tool like

Confuser Protector, adding an extra layer of protection.

The DCRat product itself consists of three components:

• A stealer/client executable

• A single PHP page, serving as the command-and-control (C2) endpoint/interface

• An administrator tool

Capabilities
• DCRat can record the victim's keystrokes

• DCrat can transmit the contents of the victim's clipboard to its command-and-control server.

• CryptoStealer module of the malware allows attackers to get access to users’ crypto wallet

information.

• It can take screenshots of the victim's computer

• DCRat can exfiltrate information from browsers, such as session cookies, auto-fill credentials,

and credit card details.

• DCrat can hijack Telegram, Steam, Discord accounts.

• DCrat can function as a loader, dropping other types of malwares on the infected computer.

• DCrat create persistence on victim PC using different techniques

• DCrat execute VBS, PS, VB, BAT scripts on victim computer

Tools and Environment
• Flare-VM (Windows 10)

• REMnux (Simulator)

• dnSpy

• Cutter

• Detect-it-easy

• RegShot

• ExeInfoPE

• De4dot

• Capa

• Procmon

• ProcessHacker

• TcpView

• PE Bear

• PE Studio

• Wireshark

• IDA pro

• CyberChef

Stage 1 (dcrat.exe)

Basic and Advanced Static Analysis

Initial access
In my analyses of DCrat (Remote Access Trojan), I will commence my analysis by scrutinizing the very first

sample I obtained from the MalwareBazaar repository. It's worth noting that this sample might have been

disseminated to a victim's computer through various means, including phishing emails, spear phishing

attachments, spear phishing links, or other methods aimed at gaining initial access. However, for the

purpose of this analysis, I will focus solely on the investigation of the stage 1 sample delivered as a result

of the initial access vector.

Basic Information
SHA256: Fd687a05b13c4f87f139d043c4d9d936b73762d616204bfb090124fd163c316e

MD5: A26ae5eb4e86ca54a1d338220318c43

CPU: 32-bits

Language: .Net programming language (c#)

Interesting Strings: Not Found

Inspection: LoadModule, MemoryStream, ToBase64String

Time Data Stamp: 2023/03/3 Fri

Packing:

In my first static analysis, when I opened binary in PE bear and calculate the size of raw data and virtual

data, I assumed that this binary is not packed because the difference between raw and virtual data is not

too much and there was no extra header which indicated that this is packed. The malware packed with

UPX packers has extra header which can clearly indicate. But at this point I was assuming binary is not

packed.

Detect-It-Easy
After opening the sample with detect-it-easy tool it shows me that the binary is using confuser protector

and entropy was very high which clearly indicates the another .EXE or DLL into source and it was

showing it is 99% packed binary.

Capa-Output
When I performed CAPA analysis on first stage of malware (dcrat.exe), it indicates that the binary is packed

using Confusex. The detail verbose analysis also tells the binary is obfuscated and it trigger most of the

rules which indicated that the binary is using these tactics and techniques according to MITRE ATT&CK

framework.

Cutter-Output (Disassembler and Decompiler)
When I disassemble the first stage sample using cutter and perform advanced static analysis, I was

confused at this point and I didn’t clearly understand the working of malware. The x86 instruction jb (jump

on below/less than, unsigned) was something which I should need to understand, so without wasting time

I decided to perform Basic and Advanced dynamic analysis.

Basic Dynamic Analysis

Procmon and Process Hacker
As an offensive security researcher, I always prefer Procmon and process hacker in my first detonation of

malware sample which I analyze. When I executed the sample and captured all traffic using Wireshark and

captured the all activities using Procmon, I didn't notice anything interesting in first stage sample. At this

point, I am assuming the first stage of Dcrat is a dropper or loader which is either downloading Second

stage malware or extracting from resources and executing in memory.

But When I analyses the traffic in Wireshark, I found a domain http://battletw.begget.tech and malware

was using get request with some encoded parameter. Still at this point I was not sure either first stage

malware is trying to connect on this domain. Because I didn’t find any interesting string which indicate this

behavior or maybe malware encoded URLs and domain, so I decided advanced dynamic analyses

(debugging of malware).

Advanced Dynamic Analysis
I started advanced dynamic analysis of first stage sample using Dnspy. Dnspy is one of the best debuggers

and Decompiler for .NET binaries. DcRat is .Net binary so I open it using dnSpy, there was a decrypt

function and long unsigned integers array which was too long and dnSpy was not able to show them all.

http://battletw.begget.tech/

After that I found an interesting thing, this sample is loading module “koi” direct into memory. But at that

time, I thought it could be a DLL or EXE which is directly loading into memory.

There is long array of unsigned integers which is too larger. Dnspy is not able to show them all.

After initializing the unsigned integers, this loader decrypts the unsigned integers and load them into direct

memory using load module.

Breakpoint:
At this point, I was very clear that this loader and executing module with the name of “koi” directly into

memory. So, I started debugging and set breakpoints on all new loaded modules and on variable which

store the value of decrypted bytes.

I was monitoring all loaded module so that I can get second stage sample. The first loaded modules were

mscorlib.dll and the sample itself, so I am ignoring these modules and looking for “koi”

After continuously debugging when I execute decrypt function and analyze the local variable “array2”

value these were bytes starting with “0x4D” and “0x5A”. Now these indicates it is portable executable

because these first two array index values indicated MZ. So, I just save that module with the name of

“koi.exe” which is the second stage sample and executing direct into memory. So, I started analyses on

stage 2 (koi.exe).

Stage 2 (koi.exe)

Basic Static Analysis
SHA256: E62e3e03c6d5ce19267e343b2f22d4815ca1e6e6f714b1f36b1f3a4a45813a00

MD5: 67a245d177b12e03bb1505325e5c7a31

CPU: 32-bits

Language: .Net programming language (c#)

Interesting Strings: Not Found

Detect-It-Easy
After opening the sample with detect-it-easy tool it shows me that the binary is using confuser protector

and entropy was not very high.

Advanced Dynamic Analysis
I started debugging to stage 2 sample (koi.exe) and there was total 50 strings in code. These strings were

base64 encoded and after that sample was decoding these strings and loading into memory. But the

decoding process not that simple, there was a loop which is getting first character from each 50 strings

and saving them into buffer then second character of each string and so on. After getting the final output

from loop it was decoding and loading the new module into memory.

This is the last string with the name of “str49”.

This is the for loop which is getting character from each string with the procedure I explained in the start

of paragraph.

After decoding the outing of for loop, it was loading another module directly into memory.

Getting-New-Module
I got this module using the script I found on internet. In the script there was same loop in python language

and getting the characters as same the malware is doing and at the end decoding the all output and write

bytes into file name (output.bin). So basically, this output is the stage 3 sample. So, I decided to analyze

the third stage. You can create your own code in any language and ChatGPT can also help you to write this

code to get last stage bytes.

Stage 3 (output.exe)

Basic Static Analysis
SHA256: F6b193ae794a423a4cd5a4dcd284437823336658d1d0752b48c297a02d5fb46a

MD5: d078805f96c03c1bc0628352b613ac77

CPU: 64-bits

Language: .Net programming language (c#)

Interesting Strings: Not Found

Detect-It-Easy
After opening the sample with detect-it-easy tool it shows me that the binary is using confuser protector

and entropy was little high which indicates maybe some text-based obfuscation.

Advanced Dynamic Analysis
When I started dynamic analyses of 3rd stage sample, it was fully obfuscated and I used ExeInfoPE to know

about the EXE. It shown me the binary is obfuscated with deepsea obfuscator. I searched about it and

found de4dot is able to de-obfuscate deepsea. When I run de4dot against the sample it didn’t detect the

obfuscation and was not able to de-obfuscate it. So, I don’t have clear binary for stage 3 but I started my

analyses on obfuscated one and try to get as much as information I can get. At this point, I want to say this

will be the PART 1 analyses of 3rd stage sample of DcRAT and I will share the information which I was able

to extract from obfuscated sample. If I get de-obfuscated sample, I will share the PART 2 which includes

the detail working of sample as I shared for above 2 samples. In case, I didn’t get clear sample then I will

also share the PART 2 with the better understanding of stage 3.

Interesting Strings
I started analysis by setting breakpoint on entry point but most of the functions are junk. Then I go through

manually on each namespace and looked into functions so that I can understand some working of

malware. Then I found some string which were looking base64 encoded and I try to decode theme using

dencode and cyberchef.

First Base64 encoded string in stage 3

When I try to decode it, there was reverse string of base64, Then I apply reverse function of converted one

and again apply FromBase64 function and got the clear output of encoded string which was a dictionary.

Second Base64 encoded string in stage 3

Flow of Encoding
Before I start decoding process for second stage, I found some interesting functions which was telling the

clear working of encoding flow and what was the purpose of above decoded dictionary.

Trim() ---> M2r.957()

M2r.i6B()
Key Value replacing from dictionary:

Reversing the output:
Reverse M2r.1vX()

Converting again frombasea64 final value:
M2r.159()

Making request on URL:

Functions dealing with dictionary:

Let me explain the above-mentioned flow and all functions. I found a function which was basically the

wrapper of other function. In this function, there was function which is taking base64encoded string as an

argument and was decoding it and replacing the key within the dictionary I have decoded. After decoding

the second string, it was applying search and replace function. In this function, it was replacing the key of

dictionary with the second decoded string by matching the value from dictionary. At this point it maybe

confusing but after this screenshot you guys will clearly understand.

Special thanks to @methew from Huntress Labs who created the second decoding script according to

above mentioned working and saved my time. So, after running the script you can clearly see I got an URL

with some base64encode parameter and I decode the parameter and found characters (requestpublic).

At this point I understand this was the same URL which I found while traffic analysis. So, this was the only

C2 server which was used by as an administrator tool.

After manually analyzing the other functions, I found some interesting stuff which tells me this sample is

able to perform enumeration of system, persistence, reboot, task scheduling and other interesting things.

Creating BATCH:

System Shutdown:

Task Scheduling and running with high privileges:

Creating Persistence using Registry:

DcRAT String:

I found another base64encode string when I decode this it was printing ASCII. So, at this point I am

completing the PART 1 analysis of DcRAT.

Conclusion
The DcRAT Remote Access Trojan (RAT) demonstrates the increasing sophistication of malicious tools in

today's digital landscape. With its multifaceted capabilities such as remote control, keylogging, system

rebooting, data exfiltration and Scripts compilation and execution on system. DcRAT RAT poses a significant

threat to individuals and organizations. However, traditional signature-based detection methods often

struggle to identify this polymorphic malware due to its rapid ability to change and evade detection.

This analysis underscores the pressing need for behavioral detection mechanisms in modern cybersecurity

strategies. Behavioral detection, powered by machine learning and artificial intelligence, focuses on

identifying behavioral patterns rather than relying solely on known signatures. This approach enables

security systems to adapt and recognize emerging threats like DcRAT RAT, even as they evolve to evade

traditional defenses. By continuously monitoring and analyzing system behavior, security solutions

equipped with behavioral detection offer a proactive defense, providing a crucial layer of protection

against emerging threats that traditional methods may miss.

